과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Science Technology Department of Zhejiang Province, Wenzhou Science and Technology Bureau, Zhejiang Provincial National Science Foundation of China
참고문헌
- Abdel-Aziz, Y.I. and Karara, H.M. (2015), "Direct linear transformation from comparator coordinates into object-space coordinates in close-range photogrammetry", Photogrammetric Eng. Remote Sensing, 81, 103-107. https://doi.org/10.14358/PERS.81.2.103
- Adamczyk, M., Liberadzki, P. and Sitnik, R. (2018), "Temperature Compensation Method for Digital Cameras in 2D and 3D Measurement Applications", Sensors, 18(11), 3685. https://doi.org/10.3390/s18113685
- Baqersad, J., Poozesh, P., Niezrecki, C. and Avitabile, P. (2017), "Photogrammetry and optical methods in structural dynamics -A review", Mech. Syst. Signal Process., 86, 17-34. https://doi.org/10.1016/j.ymssp.2016.02.011
- Brownjohn, J.M.W., Xu, Y. and Hester, D. (2017), "Vision-based bridge deformation monitoring", Front. Built Environ., 3, 23. https://doi.org/10.3389/fbuil.2017.00023
- Busca, G., Cigafa, A., Mazzoleni, P. and Zappa, E. (2014), "Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system", Experim. Mech., 54, 255-271. https://doi.org/10.1007/s11340-013-9784-8
- Chang, C.C. and Xiao, X.H. (2010), "An integrated visual-inertial technique for structural displacement and velocity measurement", Smart Struct. Syst., Int. J., 6(9), 1025-1039. https://doi.org/10.12989/sss.2010.6.9.1025
- Chatterjee, C. and Roychowdhury, V.P. (2000), "Algorithms for coplanar camera calibration", Mach. Vision Applicat., 12, 84-97. https://doi.org/10.1007/s001380050127
- Cho, S., Lee, J. and Sim, S.H. (2018), "Comparative study on displacement measurement sensors for high-speed railroad bridge", Smart Struct. Syst., Int. J., 21(5), 637-652. https://doi.org/10.12989/sss.2018.21.5.637
- Daakir, M., Zhou, Y., Deseilligny, M.P., Thom, C., Martin, O. and Rupnik, E. (2019), "Improvement of photogrammetric accuracy by modeling and correcting the thermal effect on camera calibration", ISPRS J. Photogrammetry Remote Sensing, 148, 142-155. https://doi.org/10.1016/j.isprsjprs.2018.12.012
- Faugeras, O.D. and Toscani, G. (1986), "The calibration problem for stereo", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, New York, USA.
- Feng, D.M. and Feng, M.Q. (2016), "Vision-based multipoint displacement measurement for structural health monitoring", Struct. Control Health Monitor., 23, 876-890. https://doi.org/10.1002/stc.1819
- Feng, D.M. and Feng, M.Q. (2017), "Experimental validation of cost-effective vision-based structural health monitoring", Mech. Syst. Signal Process., 88, 199-211. https://doi.org/10.1016/j.ymssp.2016.11.021
- Feng, D.M. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection - A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
- Geiger, A., Moosmann, F., Car, O. and Schuster, B. (2012), "Automatic camera and range sensor calibration using a single shot", Proceedings of 2012 IEEE International Conference on Robotics and Automation, IEEE, New York, USA.
- Handel, H. (2009), "Analyzing the influences of camera warm-up effects on image acquisition", IPSJ Transact. Comput. Vision Applicat., 1, 12-20. https://doi.org/10.1007/978-3-540-76390-1_26
- Jiang, R.N., Jauregui, D.V. and White, K.R. (2008), "Close-range photogrammetry applications in bridge measurement: Literature review", Measurement, 41, 823-834. https://doi.org/10.1016/j.measurement.2007.12.005
- Lee, J.J., Fukuda, Y., Shinozuka, M., Cho, S.J. and Yun, C.B. (2007), "Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures", Smart Struct. Syst., Int. J., 3(3), 373-384. https://doi.org/10.12989/sss.2007.3.3.373
- Lee, J.H., Ho, H.N., Shinozuka, M. and Lee, J.J. (2012), "An advanced vision-based system for real-time displacement measurement of high-rise buildings", Smart Mater. Struct., 21, 125019. https://doi.org/10.1088/0964-1726/21/12/125019
- Lee, J.H., Jung, C.Y., Choi, E. and Cheung, J.H. (2017), "Visionbased multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation", Smart Struct. Syst., Int. J., 20(5), 563-572. https://doi.org/10.12989/sss.2017.20.5.563g
- Liu, T.S., Burner, A.W., Jones, T.W. and Barrows, D.A. (2012), "Photogrammetric techniques for aerospace applications", Progress Aerosp. Sci., 54, 1-58. https://doi.org/10.1016/j.paerosci.2012.03.002
- Merchant, D.C. (2006), "Influence of Temperature on Focal Length for the Airborne Camera", Proceedings of San Antonio 2006 ASPRS-MAPPS Fall Conference, San Antonio, TX, USA.
- Olaszek, P. (1999), "Investigation of the dynamic characteristic of bridge structures using a computer vision method", Measurement, 25, 227-236. https://doi.org/10.1016/S0263-2241(99)00006-8
- Podbreznik, P. and Potocnik, B. (2012), "Assessing the influence of temperature variations on the geometrical properties of a low-cost calibrated camera system by using computer vision procedures", Mach. Vision Applicat., 23, 953-966. https://doi.org/10.1007/s00138-011-0330-3
- Poulin-Girard, A.S., Dallaire, X., Veillette, A., Thibault, S. and Laurendeau, D. (2014), "Study of camera calibration process with ray tracing", In: Current Developments in Lens Design and Optical Engineering XV, Proceedings of SPIE, (R.B. Johnson, V.N. Mahajan, S. Thibault Eds.), Vol. 9192, SPIE Press, Bellingham, WA, USA.
- Robson, S., Clarke, T.A. and Chen, J. (1993), "The suitability of the Pulnix TM6CN CCD camera for photogrammetric measurement", In: Videometrics II, Proceedings of SPIE, (S.F. El-Hakim Ed.), Vol. 2067, SPIE Press, Bellingham, WA, USA.
- Salvi, J., Armangue, X. and Batlle, J. (2002), "A comparative review of camera calibrating methods with accuracy evaluation", Pattern Recognit., 35, 1617-1635. https://doi.org/10.1016/S0031-3203(01)00126-1
- Sharpe Jr., W.N. (2008), Handbook of experimental solid mechanics, Springer US, New York, USA.
- Smith, M.J. and Cope, E. (2010), "The effects of temperature variation on single-lens-reflex digital camera calibration parameters", International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38 (Part 5), 554-559.
- Sun, W. and Cooperstock, J.R. (2006), "An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques", Mach. Vision Applicat., 17, 51-67. https://doi.org/10.1007/s00138-006-0014-6
- Surhone, L.M., Tennoe, M.T. and Henssonow, S.F. (2010), Videogrammetry, Betascript Publishing.
- Tsai, R.Y. (1987), "A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses", IEEE J. Robotics Automat., 3, 323-344. https://doi.org/10.1109/JRA.1987.1087109
- Wahbeh, A.M., Caffrey, J.P. and Masri, S.F. (2003), "A visionbased approach for the direct measurement of displacements in vibrating systems", Smart Mater. Struct., 12, 785-794. https://doi.org/10.1088/0964-1726/12/5/016
- Weng, J., Cohen, P. and Herniou M. (1992), "Camera calibration with distortion models and accuracy evaluation", IEEE Transact. Pattern Anal. Mach. Intel., 14, 965-980. https://doi.org/10.1109/34.159901
- Widenhorn, R., Blouke, M.M., Weber, A., Rest, A. and Bodegom, E. (2002), "Temperature dependence of dark current in a CCD", In: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, Proceedings of SPIE, (N. Sampat, M.M. Blouke, J. Canosa Eds.), Vol. 4669, SPIE Press, Bellingham, WA, USA.
- Xu, Y. and Brownjohn, J.M.W. (2018), "Review of machine-vision based methodologies for displacement measurement in civil structures", J. Civil Struct. Health Monitor., 8, 91-110. https://doi.org/10.1007/s13349-017-0261-4
- Yu, Q.F., Chao, Z.C., Jiang, G.W., Shang, Y., Fu, S.H., Liu, X.L., Zhu, X.W. and Liu, H.B. (2014), "The effects of temperature variation on videometric measurement and a compensation method", Image Vision Comput., 32, 1021-1029. https://doi.org/10.1016/j.imavis.2014.08.011
- Zhang, Z.Y. (2000), "A flexible new technique for camera calibration", IEEE Transact. Pattern Anal. Mach. Intel., 22, 1330-1334. https://doi.org/10.1109/34.888718
- Zhou, H.F., Zheng, J.F., Xie, Z.L., Lu, L.J., Ni, Y.Q. and Ko, J.M. (2017), "Temperature effects on vision measurement system in long-term continuous monitoring of displacement", Renew. Energy, 114, 968-983. https://doi.org/10.1016/j.renene.2017.07.104
- Zhou, H.F., Lu, L.J., Li, Z.Y. and Ni, Y.Q. (2019), "Performance of videogrammetric displacement monitoring technique under varying ambient temperature", Adv. Struct. Eng., 22(16), 3371-3384. https://doi.org/10.1177/1369433218822089