References
- Amin, A., Foster, S.J., Gilbert, R.I. and Kaufmann, W. (2017), "Material characterisation of macro synthetic fibre reinforced concrete", Cement Concrete Compos., 84, 124-133. https://doi.org/10.1016/j.cemconcomp.2017.08.018.
- Ansari, F. and Li, Q. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J., 95(6), 747-755.
- Balaguru, P.N. and Shah, S.P. (1992), Fiber-Reinforced Cement Composites, McGraw-Hill. the University of Michigan.
- Bao, J., Wang, L., Zhang, Q., Liang, Y., Jiang, P. and Song, Y. (2018), "Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete", Constr. Build. Mater., 187, 394-405. https://doi.org/10.1016/j.conbuildmat.2018.07.203.
- Barros, J.A., Gouveia, A.V. and Azevedo, A.F. (2011), "Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures", Comput. Concrete, 8(6), 735-755. https://doi.org/10.12989/cac.2011.8.6.735.
- Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D. and Akers, S.A. (2000), "Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress", J. Eng. Mech., 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944).
- Bitencourt, L.A.G., Manzoli, O.L., Bittencourt, T.N. and Vecchio, F.J. (2019), "Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers", Int. J. Solid. Struct., 159, 171-190. https://doi.org/10.1016/j.ijsolstr.2018.09.028.
- Blanco, A., Pujadas, P., Cavalaro, S., de la Fuente, A. and Aguado, A. (2014), "Constitutive model for fibre reinforced concrete based on the Barcelona test", Cement Concrete Compos., 53, 327-340. https://doi.org/10.1016/j.cemconcomp.2014.07.017.
- Candappa, D., Sanjayan, J. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).
- Chen, W.F. (2007), Plasticity in Reinforced Concrete, J. Ross Publishing.
- Chen, W.F. and Han, D.J. (2012), Plasticity for Structural Engineers, Springer, New York.
- Chern, J.C., Yang, H.J. and Chen, H.W. (1993), "Behavior of steel fiber reinforced concrete in multiaxial loading", ACI Mater. J., 89(1), 32-40.
- Chi, Y., Xu, L. and Yu, H.S. (2013), "Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression", J. Eng. Mech., 140(2), 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
- Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.
- Chi, Y., Xu, L. and Zhang, Y. (2012), "Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression", J. Mater. Civil Eng., 26(2), 211-218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764.
- Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
- Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete", Compos. Part B: Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.
- Dowell, M. and Jarratt, P. (1972), "The "Pegasus" method for computing the root of an equation", BIT Numer. Math., 12(4), 503-508. https://doi.org/10.1007/bf01932959.
- Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S.K. and Bagherzadeh, A. (2010), "Behaviour of Slurry Infiltrated Fibre Concrete (SIFCON) under triaxial compression", Cement Concrete Res., 40(11), 1571-1581. https://doi.org/10.1016/j.cemconres.2010.06.009.
- Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solid. Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0.
- Gul, M., Bashir, A. and Naqash, J. A. (2014), "Study of modulus of elasticity of steel fiber reinforced concrete", Int. J. Eng. Adv. Technol., 3(4), 304-309.
- Guo, Z. (1997), The Strength and Deformation of Concrete-Experimental Results and Constitutive Relationship, Tsinghua University Press, Beijing.
- Han, J., Zhao, M., Chen, J. and Lan, X. (2019), "Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 209, 577-591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
- Hibbit, D., Karlsson, B. and Sorenson, P. (2005), ABAQUS Reference Manual 6.7, ABAQUS Inc. Pawtucket.
- Imran, I. and Pantazopoulou, S. J. (2001), "Plasticity model for concrete under triaxial compression", J. Eng. Mech., 127(3), 281-290. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281).
- Jiang, J.F., Xiao, P.C. and Li, B.B. (2017), "True-triaxial compressive behaviour of concrete under passive confinement", Constr. Build. Mater., 156, 584-598. https://doi.org/10.1016/j.conbuildmat.2017.08.143.
- Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
- Lan, S. and Guo, Z. (1997), "Experimental investigation of multiaxial compressive strength of concrete under different stress paths", ACI Mater. J., 94(5), 427-434.
- Lee, S., Park, Y. and Abolmaali, A. (2019), "Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes", Struct., 19, 203-211. https://doi.org/10.1016/j.istruc.2018.12.010.
- Liang, X. and Wu, C. (2018), "Meso-scale modelling of steel fibre reinforced concrete with high strength", Constr. Build. Mater., 165, 187-198. https://doi.org/10.1016/j.conbuildmat.2018.01.028.
- Lu, X. and Hsu, C.T.T. (2006), "Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021.
- Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013.
- Pantazopoulou, S.J. and Zanganeh, M. (2001), "Triaxial tests of fiber-reinforced concrete", J. Mater. Civil Eng., 13(5), 340-348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340).
- Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255.
- Poorhoseina, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167.
- Ren, Y., Yu, Z., Huang, Q. and Ren, Z. (2018), "Constitutive model and failure criterions for lightweight aggregate concrete: A true triaxial experimental test", Constr. Build. Mater., 171, 759-769. https://doi.org/10.1016/j.conbuildmat.2018.03.219.
- Rodrigues, E.A., Manzoli, O.L., Bitencourt, L.A.G., Bittencourt, T.N. and Sanchez, M. (2018), "An adaptive concurrent multiscale model for concrete based on coupling finite elements", Comput. Meth. Appl. Mech. Eng., 328, 26-46. https://doi.org/10.1016/j.cma.2017.08.048.
- Sloan, S.W. (1987), "Substepping schemes for the numerical integration of elastoplastic stress-strain relations", 24(5), 893-911. https://doi.org/10.1002/nme.1620240505.
- Sloan, S.W., Abbo, A.J. and Sheng, D. (2001), "Refined explicit integration of elastoplastic models with automatic error control", Eng. Comput., 18(1/2), 121-194. https://doi.org/10.1108/02644400110365842.
- Smolcic, Z. and Ozbolt, J. (2017), "Meso scale model for fiber-reinforced-concrete: Microplane based approach", Comput. Concrete, 17(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375.
- Swaddiwudhipong, S. and Seow, P.E.C. (2006), "Modelling of steel fiber-reinforced concrete under multi-axial loads", Cement Concrete Res., 36(7), 1354-1361. https://doi.org/10.1016/j.cemconres.2006.03.008.
- William, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", Int. Assoc. Bridge Struct. Eng. Pr., 19, 1-30.
- Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063.
Cited by
- Elasto-Damage constitutive modelling of recycled aggregate concrete vol.28, pp.1, 2020, https://doi.org/10.12989/cac.2021.28.1.013