DOI QR코드

DOI QR Code

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B. (Department of Structural Engineering, University of Tabriz) ;
  • Farzam, Masood (Department of Structural Engineering, University of Tabriz) ;
  • Shishvan, Siamak S. (Department of Structural Engineering, University of Tabriz)
  • Received : 2019.08.21
  • Accepted : 2020.02.12
  • Published : 2020.02.25

Abstract

Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

Keywords

References

  1. Amin, A., Foster, S.J., Gilbert, R.I. and Kaufmann, W. (2017), "Material characterisation of macro synthetic fibre reinforced concrete", Cement Concrete Compos., 84, 124-133. https://doi.org/10.1016/j.cemconcomp.2017.08.018.
  2. Ansari, F. and Li, Q. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J., 95(6), 747-755.
  3. Balaguru, P.N. and Shah, S.P. (1992), Fiber-Reinforced Cement Composites, McGraw-Hill. the University of Michigan.
  4. Bao, J., Wang, L., Zhang, Q., Liang, Y., Jiang, P. and Song, Y. (2018), "Combined effects of steel fiber and strain rate on the biaxial compressive behavior of concrete", Constr. Build. Mater., 187, 394-405. https://doi.org/10.1016/j.conbuildmat.2018.07.203.
  5. Barros, J.A., Gouveia, A.V. and Azevedo, A.F. (2011), "Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures", Comput. Concrete, 8(6), 735-755. https://doi.org/10.12989/cac.2011.8.6.735.
  6. Bazant, Z.P., Caner, F.C., Carol, I., Adley, M.D. and Akers, S.A. (2000), "Microplane model M4 for concrete. I: Formulation with work-conjugate deviatoric stress", J. Eng. Mech., 126(9), 944-953. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944).
  7. Bitencourt, L.A.G., Manzoli, O.L., Bittencourt, T.N. and Vecchio, F.J. (2019), "Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers", Int. J. Solid. Struct., 159, 171-190. https://doi.org/10.1016/j.ijsolstr.2018.09.028.
  8. Blanco, A., Pujadas, P., Cavalaro, S., de la Fuente, A. and Aguado, A. (2014), "Constitutive model for fibre reinforced concrete based on the Barcelona test", Cement Concrete Compos., 53, 327-340. https://doi.org/10.1016/j.cemconcomp.2014.07.017.
  9. Candappa, D., Sanjayan, J. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).
  10. Chen, W.F. (2007), Plasticity in Reinforced Concrete, J. Ross Publishing.
  11. Chen, W.F. and Han, D.J. (2012), Plasticity for Structural Engineers, Springer, New York.
  12. Chern, J.C., Yang, H.J. and Chen, H.W. (1993), "Behavior of steel fiber reinforced concrete in multiaxial loading", ACI Mater. J., 89(1), 32-40.
  13. Chi, Y., Xu, L. and Yu, H.S. (2013), "Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression", J. Eng. Mech., 140(2), 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
  14. Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.
  15. Chi, Y., Xu, L. and Zhang, Y. (2012), "Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression", J. Mater. Civil Eng., 26(2), 211-218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764.
  16. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
  17. Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete", Compos. Part B: Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.
  18. Dowell, M. and Jarratt, P. (1972), "The "Pegasus" method for computing the root of an equation", BIT Numer. Math., 12(4), 503-508. https://doi.org/10.1007/bf01932959.
  19. Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S.K. and Bagherzadeh, A. (2010), "Behaviour of Slurry Infiltrated Fibre Concrete (SIFCON) under triaxial compression", Cement Concrete Res., 40(11), 1571-1581. https://doi.org/10.1016/j.cemconres.2010.06.009.
  20. Grassl, P., Lundgren, K. and Gylltoft, K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solid. Struct., 39(20), 5205-5223. https://doi.org/10.1016/S0020-7683(02)00408-0.
  21. Gul, M., Bashir, A. and Naqash, J. A. (2014), "Study of modulus of elasticity of steel fiber reinforced concrete", Int. J. Eng. Adv. Technol., 3(4), 304-309.
  22. Guo, Z. (1997), The Strength and Deformation of Concrete-Experimental Results and Constitutive Relationship, Tsinghua University Press, Beijing.
  23. Han, J., Zhao, M., Chen, J. and Lan, X. (2019), "Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 209, 577-591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
  24. Hibbit, D., Karlsson, B. and Sorenson, P. (2005), ABAQUS Reference Manual 6.7, ABAQUS Inc. Pawtucket.
  25. Imran, I. and Pantazopoulou, S. J. (2001), "Plasticity model for concrete under triaxial compression", J. Eng. Mech., 127(3), 281-290. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281).
  26. Jiang, J.F., Xiao, P.C. and Li, B.B. (2017), "True-triaxial compressive behaviour of concrete under passive confinement", Constr. Build. Mater., 156, 584-598. https://doi.org/10.1016/j.conbuildmat.2017.08.143.
  27. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
  28. Lan, S. and Guo, Z. (1997), "Experimental investigation of multiaxial compressive strength of concrete under different stress paths", ACI Mater. J., 94(5), 427-434.
  29. Lee, S., Park, Y. and Abolmaali, A. (2019), "Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes", Struct., 19, 203-211. https://doi.org/10.1016/j.istruc.2018.12.010.
  30. Liang, X. and Wu, C. (2018), "Meso-scale modelling of steel fibre reinforced concrete with high strength", Constr. Build. Mater., 165, 187-198. https://doi.org/10.1016/j.conbuildmat.2018.01.028.
  31. Lu, X. and Hsu, C.T.T. (2006), "Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021.
  32. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  33. Othman, H. and Marzouk, H. (2018), "Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads", Int. J. Impact Eng., 114, 20-31. https://doi.org/10.1016/j.ijimpeng.2017.12.013.
  34. Pantazopoulou, S.J. and Zanganeh, M. (2001), "Triaxial tests of fiber-reinforced concrete", J. Mater. Civil Eng., 13(5), 340-348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340).
  35. Perumal, R. (2014), "Performance and modeling of high-performance steel fiber reinforced concrete under impact loads", Comput. Concrete, 13(2), 255-270. https://doi.org/10.12989/cac.2014.13.2.255.
  36. Poorhoseina, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167.
  37. Ren, Y., Yu, Z., Huang, Q. and Ren, Z. (2018), "Constitutive model and failure criterions for lightweight aggregate concrete: A true triaxial experimental test", Constr. Build. Mater., 171, 759-769. https://doi.org/10.1016/j.conbuildmat.2018.03.219.
  38. Rodrigues, E.A., Manzoli, O.L., Bitencourt, L.A.G., Bittencourt, T.N. and Sanchez, M. (2018), "An adaptive concurrent multiscale model for concrete based on coupling finite elements", Comput. Meth. Appl. Mech. Eng., 328, 26-46. https://doi.org/10.1016/j.cma.2017.08.048.
  39. Sloan, S.W. (1987), "Substepping schemes for the numerical integration of elastoplastic stress-strain relations", 24(5), 893-911. https://doi.org/10.1002/nme.1620240505.
  40. Sloan, S.W., Abbo, A.J. and Sheng, D. (2001), "Refined explicit integration of elastoplastic models with automatic error control", Eng. Comput., 18(1/2), 121-194. https://doi.org/10.1108/02644400110365842.
  41. Smolcic, Z. and Ozbolt, J. (2017), "Meso scale model for fiber-reinforced-concrete: Microplane based approach", Comput. Concrete, 17(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375.
  42. Swaddiwudhipong, S. and Seow, P.E.C. (2006), "Modelling of steel fiber-reinforced concrete under multi-axial loads", Cement Concrete Res., 36(7), 1354-1361. https://doi.org/10.1016/j.cemconres.2006.03.008.
  43. William, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", Int. Assoc. Bridge Struct. Eng. Pr., 19, 1-30.
  44. Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063.

Cited by

  1. Elasto-Damage constitutive modelling of recycled aggregate concrete vol.28, pp.1, 2020, https://doi.org/10.12989/cac.2021.28.1.013