Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng. 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Chapra, S.C. and Canale, R.P. (1988), Numerical Methods for Engineers, McGraw-Hill, New York, 1988.
- Cheng, B. and Titterington, D.M. (1994), "Neural networks: A review from a statistical perspective", Stat. Sci., 9, 2-54. https://doi.org/10.1214/ss/1177010638
- Duflot, M. and Nguyen-Dang, H. (2004), "Fatigue crack growth analysis by an enriched meshless method", J. Comput. Appl. Math., 168(1), 155-164. https://doi.org/10.1016/j.cam.2003.04.006.
- Fan, C.B., Huang, Y.B. and Wang, Q.F. (2014), "Sparsity-promoting polynomial response surface: A new surrogate model for response prediction", Adv. Eng. Softw., 77, 48-65. https://doi.org/10.1016/j.advengsoft.2014.08.001.
- Geng, J., Zhang, X.W., Chen, X.F. and Xue, X.F. (2017), "High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spline wavelet on interval", Sci. China Technol. Sci., 60(5), 792-806. https://doi.org/10.1007/s11431-016-0140-1.
- Gunn, S.R. (1998), "Support vector machines for classification and regression", ISIS Technical Report., 14, 85-86.
- Han, Q.H., Yang, G., Xu, J. and Wang, Y.H. (2017), "Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM", Steel. Compos. Struct., 25(1), 57-65. https://doi.org/10.12989/scs.2017.25.1.057.
- Jameel, A. and Harmain, G.A. (2015), "Fatigue crack growth in presence of material discontinuities by EFGM", Int. J. Fatigue, 81, 105-116. https://doi.org/10.1016/j.ijfatigue.2015.07.021.
- Jiang, S.Y. and Du, C.B. (2017), "Study on dynamic interaction between crack and inclusion or void by using XFEM", Struct. Eng. Mech., 63(3), 329-345. https://doi.org/10.12989/sem.2017.63.3.329.
- Jiang, S.Y., Du, C.B. and Gu, C.S. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. http://dx.doi.org/10.12989/sem.2014.49.5.597.
- Jamal-Omidi, M. and Falah, M. (2014), "3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM", Struct. Eng. Mech., 50(4), 525-539. https://doi.org/10.12989/sem.2014.50.4.525.
- Kee, B.B.T., Liu, G.R., Zhang, G.Y. and Lu, C. (2008), "A residual based error estimator using radial basis functions", Finite. Elem. Anal. Des., 44(9), 631-645. https://doi.org/10.1016/j.finel.2008.02.002.
- Kleijnen, J.P.C. (2009), "Kriging metamodeling in simulation: A review" Eur. J. Oper. Res., 192(3), 707-716. https://doi.org/10.1016/j.ejor.2007.10.013.
- Kumar, S., Singh, I.V., Mishra, B.K. and Rabczuk, T. (2015), "Modeling and simulation of kinked cracks by virtual node XFEM", Comput. Method Appl. Mech., 283, 1425-1466. https://doi.org/10.1016/j.cma.2014.10.019.
- Li, X., Yang, Z.B., Zhang, H., Du, Z.H. and Chen, X.F. (2014), "Crack growth sparse pursuit for wind turbine blade", Smart Mater. Struct., 24(1), 015002. https://doi.org/10.1088/0964-1726/24/1/015002.
- Liu, X.Y., Xiao, Q.Z. and Karihaloo, B.L. (2004), "XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials", Int. J. Numer. Meth. Eng., 59(8), 1103-1118. https://doi.org/10.1002/nme.906.
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J.
- Muthu, N., Falzon, B.G., Maiti, S.K. and Khoddam, S. (2014), "Modified crack closure integral technique for extraction of SIFs in meshfree methods", Finite. Elem. Anal. Des., 78, 25-39. https://doi.org/10.1016/j.finel.2013.09.005.
- Nanda Kumar, M.R., Ramachandra Murthy, A., Gopinath, S. and Iyer, Nagesh R. (2016), "XFEM for fatigue and fracture analysis of cracked stiffened panels", Struct. Eng. Mech., 57(1), 65-89. https://doi.org/10.12989/sem.2016.57.1.065.
- Osher, S. and Fedkiw, R.P. (2001), "Level set methods: an overview and some recent results", J. Comput. Phys., 169(2), 463-502. https://doi.org/10.1006/jcph.2000.6636.
- Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
- Pais, M.J., Viana, F.A.C., Kim, N.M. (2012), "Enabling high-order integration of fatigue crack growth with surrogate modeling", Int. J. Fatigue., 43, 150-159. https://doi.org/10.1016/j.ijfatigue.2012.03.010.
- Pant, M., Singh, I.V. and Mishra, B.K. (2010), "Numerical simulation of thermo-elastic fracture problems using element free Galerkin method", Int. J. Mech. Sci., 52(12), 1745-1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008.
- Pathak, H., Singh, A. and Singh, I.V. (2013), "Fatigue crack growth simulations of bi-material interfacial cracks under thermo-elastic loading by extended finite element method", Eur. J. Comput. Mech., 22, 79-104. https://doi.org/10.1080/17797179.2013.766017.
- Paris, P.C., Gomez, M.P. and Anderson, W.E. (1961), "A rational analytic theory of Fatigue", Trend Eng., 13(1), 9-14.
- Pathak, H., Singh, A. and Singh, I.V. (2014), "Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method", Appl. Math. Model., 38(13), 3093-3123. https://doi.org/10.1016/j.apm.2013.11.030.
- Shen, F., Hu, W.P., Meng, Q.C. and Zhang, M. (2015), "A new damage mechanics based approach to fatigue life prediction and its engineering application", Acta. Mech. Solida. Sin., 28(5), 510-520. https://doi.org/10.1016/S0894-9166(15)30046-X.
- Song, W.L., Xiang, J.W. and Zhong, Y.T. (2017), "Mechanical parameters detection in stepped shafts using the FEM simulation based impulse excitation technique", Smart Struct. Syst., 20(4), 473-481. https://doi.org/10.12989/sss.2017.20.4.473.
- Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method, part I: computer implementation", Int. J. Solids Struct., 40(26), 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002.
- Sukumar, N., Huang, Z.Y., Prevost, J.H. and Suo, Z. (2004), "Partition of unity enrichment for bimaterial interface cracks", Int. J. Numer. Meth. Eng., 59(8), 1075-1102. https://doi.org/10.1002/nme.902.
- Theiner, Y. and Hofstetter, G. (2009), "Numerical prediction of crack propagation and crack widths in concrete structures", Eng. Struct., 31(8), 1832-1840. https://doi.org/10.1016/j.engstruct.2009.02.041.
- Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree", Adv. Comput. Math., 4, 389-396. https://doi.org/10.1007/BF02123482.
- Xiang,J.W., He, Z.J., He, Y.M. and Chen, X.F. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
- Xiang, J.W., Chen, X.F. and Yang, L.F. (2009), "Crack identification in short shafts using wavelet-based element and neural network", Struct. Eng. Mech., 33(5), 543-560. https://doi.org/10.12989/sem.2009.33.5.543.
- Xiang, J.W., Jiang, Z.S., Wang, Y.X. and Chen, X.F. (2011), "Study on damage detection software of beam-like structures", Struct. Eng. Mech., 39(1), 1-15. https://doi.org/10.12989/sem.2011.39.1.077.
- Xiang, J.W., Wang, Y.X., Jiang, Z.S., Long, J.Q. and Ma, G. (2012), "Numerical simulation of plane crack using hermite cubic spline wavelet", CMES-Comp. Model. Eng., 88(1), 1-16.
- Xiang, J.W., Liang, M. and Zhong, Y.T. (2016), "Computation of stress intensity factors using wavelet-based elements", J. Mech., 32(3), N1-N6. https://doi.org/10.1017/jmech.2016.2.
- Xiang, J.W., Nackenhorst, U., Wang, Y.X., Jiang, Y.Y., Gao, H.F. and He, Y.M. (2014a), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397.
- Xiang, J.W., Liang, M. and He, Y.M. (2014b), "Experimental investigation of frequency-based multi-damage detection for beams using support vector regression", Eng. Fract. Mech., 131, 257-268. https://doi.org/10.1016/j.engfracmech.2014.08.001.
- Xiang, J.W. and Zhong, Y.T. (2016), "A novel personalized diagnosis methodology to detect faults in a shaft", Appl. Sci. Basel., 6(12), 414. https://doi.org/10.3390/app6120414
- Xu, J.C., Ren, Q.W. and Shen, Z.Z. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-svm", Geomech. Eng., 13(3), 447-458. https://doi.org/10.12989/gae.2017.13.3.447.
- Xue, X.H. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSsvm model", Comput. Concrete., 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
- Zhang, C.S., Ji, J., Gui, Y.L., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-svm", Geomech. Eng., 11(3), 361-372. http://dx.doi.org/10.12989/gae.2016.11.3.361.
- Zhang, X.W., Zuo, H., Liu, J.X., Chen, X.F. and Yang, Z.B. (2016), "Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval", Appl. Math. Model., 40(3), 1914-1928. https://doi.org/10.1016/j.apm.2015.09.036.
- Zhang, X.W., Chen, X.F., Wang, X.Z. and He, Z.J. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite. Elem. Anal. Des., 46(5), 416-427. https://doi.org/10.1016/j.finel.2010.01.002.
- Zhang, X.W., Gao, R.X., Yan, R.Q., Chen, X.F., Sun, C. and Yang, Z.B. (2016), "Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization", J. Sound. Vib., 375, 200-216. https://doi.org/10.1016/j.jsv.2016.04.018.
- Zhong, Y.T. and Xiang, J.W. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., 24(2),173-182. https://doi.org/10.12989/SSS.2019.24.2.173