DOI QR코드

DOI QR Code

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology) ;
  • Xiang, Jiawei (College of Mechanical & Electrical Engineering, Wenzhou University)
  • Received : 2018.08.28
  • Accepted : 2019.10.15
  • Published : 2020.02.25

Abstract

The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng. 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  2. Chapra, S.C. and Canale, R.P. (1988), Numerical Methods for Engineers, McGraw-Hill, New York, 1988.
  3. Cheng, B. and Titterington, D.M. (1994), "Neural networks: A review from a statistical perspective", Stat. Sci., 9, 2-54. https://doi.org/10.1214/ss/1177010638
  4. Duflot, M. and Nguyen-Dang, H. (2004), "Fatigue crack growth analysis by an enriched meshless method", J. Comput. Appl. Math., 168(1), 155-164. https://doi.org/10.1016/j.cam.2003.04.006.
  5. Fan, C.B., Huang, Y.B. and Wang, Q.F. (2014), "Sparsity-promoting polynomial response surface: A new surrogate model for response prediction", Adv. Eng. Softw., 77, 48-65. https://doi.org/10.1016/j.advengsoft.2014.08.001.
  6. Geng, J., Zhang, X.W., Chen, X.F. and Xue, X.F. (2017), "High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spline wavelet on interval", Sci. China Technol. Sci., 60(5), 792-806. https://doi.org/10.1007/s11431-016-0140-1.
  7. Gunn, S.R. (1998), "Support vector machines for classification and regression", ISIS Technical Report., 14, 85-86.
  8. Han, Q.H., Yang, G., Xu, J. and Wang, Y.H. (2017), "Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM", Steel. Compos. Struct., 25(1), 57-65. https://doi.org/10.12989/scs.2017.25.1.057.
  9. Jameel, A. and Harmain, G.A. (2015), "Fatigue crack growth in presence of material discontinuities by EFGM", Int. J. Fatigue, 81, 105-116. https://doi.org/10.1016/j.ijfatigue.2015.07.021.
  10. Jiang, S.Y. and Du, C.B. (2017), "Study on dynamic interaction between crack and inclusion or void by using XFEM", Struct. Eng. Mech., 63(3), 329-345. https://doi.org/10.12989/sem.2017.63.3.329.
  11. Jiang, S.Y., Du, C.B. and Gu, C.S. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. http://dx.doi.org/10.12989/sem.2014.49.5.597.
  12. Jamal-Omidi, M. and Falah, M. (2014), "3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM", Struct. Eng. Mech., 50(4), 525-539. https://doi.org/10.12989/sem.2014.50.4.525.
  13. Kee, B.B.T., Liu, G.R., Zhang, G.Y. and Lu, C. (2008), "A residual based error estimator using radial basis functions", Finite. Elem. Anal. Des., 44(9), 631-645. https://doi.org/10.1016/j.finel.2008.02.002.
  14. Kleijnen, J.P.C. (2009), "Kriging metamodeling in simulation: A review" Eur. J. Oper. Res., 192(3), 707-716. https://doi.org/10.1016/j.ejor.2007.10.013.
  15. Kumar, S., Singh, I.V., Mishra, B.K. and Rabczuk, T. (2015), "Modeling and simulation of kinked cracks by virtual node XFEM", Comput. Method Appl. Mech., 283, 1425-1466. https://doi.org/10.1016/j.cma.2014.10.019.
  16. Li, X., Yang, Z.B., Zhang, H., Du, Z.H. and Chen, X.F. (2014), "Crack growth sparse pursuit for wind turbine blade", Smart Mater. Struct., 24(1), 015002. https://doi.org/10.1088/0964-1726/24/1/015002.
  17. Liu, X.Y., Xiao, Q.Z. and Karihaloo, B.L. (2004), "XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials", Int. J. Numer. Meth. Eng., 59(8), 1103-1118. https://doi.org/10.1002/nme.906.
  18. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J.
  19. Muthu, N., Falzon, B.G., Maiti, S.K. and Khoddam, S. (2014), "Modified crack closure integral technique for extraction of SIFs in meshfree methods", Finite. Elem. Anal. Des., 78, 25-39. https://doi.org/10.1016/j.finel.2013.09.005.
  20. Nanda Kumar, M.R., Ramachandra Murthy, A., Gopinath, S. and Iyer, Nagesh R. (2016), "XFEM for fatigue and fracture analysis of cracked stiffened panels", Struct. Eng. Mech., 57(1), 65-89. https://doi.org/10.12989/sem.2016.57.1.065.
  21. Osher, S. and Fedkiw, R.P. (2001), "Level set methods: an overview and some recent results", J. Comput. Phys., 169(2), 463-502. https://doi.org/10.1006/jcph.2000.6636.
  22. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
  23. Pais, M.J., Viana, F.A.C., Kim, N.M. (2012), "Enabling high-order integration of fatigue crack growth with surrogate modeling", Int. J. Fatigue., 43, 150-159. https://doi.org/10.1016/j.ijfatigue.2012.03.010.
  24. Pant, M., Singh, I.V. and Mishra, B.K. (2010), "Numerical simulation of thermo-elastic fracture problems using element free Galerkin method", Int. J. Mech. Sci., 52(12), 1745-1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008.
  25. Pathak, H., Singh, A. and Singh, I.V. (2013), "Fatigue crack growth simulations of bi-material interfacial cracks under thermo-elastic loading by extended finite element method", Eur. J. Comput. Mech., 22, 79-104. https://doi.org/10.1080/17797179.2013.766017.
  26. Paris, P.C., Gomez, M.P. and Anderson, W.E. (1961), "A rational analytic theory of Fatigue", Trend Eng., 13(1), 9-14.
  27. Pathak, H., Singh, A. and Singh, I.V. (2014), "Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method", Appl. Math. Model., 38(13), 3093-3123. https://doi.org/10.1016/j.apm.2013.11.030.
  28. Shen, F., Hu, W.P., Meng, Q.C. and Zhang, M. (2015), "A new damage mechanics based approach to fatigue life prediction and its engineering application", Acta. Mech. Solida. Sin., 28(5), 510-520. https://doi.org/10.1016/S0894-9166(15)30046-X.
  29. Song, W.L., Xiang, J.W. and Zhong, Y.T. (2017), "Mechanical parameters detection in stepped shafts using the FEM simulation based impulse excitation technique", Smart Struct. Syst., 20(4), 473-481. https://doi.org/10.12989/sss.2017.20.4.473.
  30. Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method, part I: computer implementation", Int. J. Solids Struct., 40(26), 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002.
  31. Sukumar, N., Huang, Z.Y., Prevost, J.H. and Suo, Z. (2004), "Partition of unity enrichment for bimaterial interface cracks", Int. J. Numer. Meth. Eng., 59(8), 1075-1102. https://doi.org/10.1002/nme.902.
  32. Theiner, Y. and Hofstetter, G. (2009), "Numerical prediction of crack propagation and crack widths in concrete structures", Eng. Struct., 31(8), 1832-1840. https://doi.org/10.1016/j.engstruct.2009.02.041.
  33. Wendland, H. (1995), "Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree", Adv. Comput. Math., 4, 389-396. https://doi.org/10.1007/BF02123482.
  34. Xiang,J.W., He, Z.J., He, Y.M. and Chen, X.F. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
  35. Xiang, J.W., Chen, X.F. and Yang, L.F. (2009), "Crack identification in short shafts using wavelet-based element and neural network", Struct. Eng. Mech., 33(5), 543-560. https://doi.org/10.12989/sem.2009.33.5.543.
  36. Xiang, J.W., Jiang, Z.S., Wang, Y.X. and Chen, X.F. (2011), "Study on damage detection software of beam-like structures", Struct. Eng. Mech., 39(1), 1-15. https://doi.org/10.12989/sem.2011.39.1.077.
  37. Xiang, J.W., Wang, Y.X., Jiang, Z.S., Long, J.Q. and Ma, G. (2012), "Numerical simulation of plane crack using hermite cubic spline wavelet", CMES-Comp. Model. Eng., 88(1), 1-16.
  38. Xiang, J.W., Liang, M. and Zhong, Y.T. (2016), "Computation of stress intensity factors using wavelet-based elements", J. Mech., 32(3), N1-N6. https://doi.org/10.1017/jmech.2016.2.
  39. Xiang, J.W., Nackenhorst, U., Wang, Y.X., Jiang, Y.Y., Gao, H.F. and He, Y.M. (2014a), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397.
  40. Xiang, J.W., Liang, M. and He, Y.M. (2014b), "Experimental investigation of frequency-based multi-damage detection for beams using support vector regression", Eng. Fract. Mech., 131, 257-268. https://doi.org/10.1016/j.engfracmech.2014.08.001.
  41. Xiang, J.W. and Zhong, Y.T. (2016), "A novel personalized diagnosis methodology to detect faults in a shaft", Appl. Sci. Basel., 6(12), 414. https://doi.org/10.3390/app6120414
  42. Xu, J.C., Ren, Q.W. and Shen, Z.Z. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-svm", Geomech. Eng., 13(3), 447-458. https://doi.org/10.12989/gae.2017.13.3.447.
  43. Xue, X.H. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSsvm model", Comput. Concrete., 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
  44. Zhang, C.S., Ji, J., Gui, Y.L., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-svm", Geomech. Eng., 11(3), 361-372. http://dx.doi.org/10.12989/gae.2016.11.3.361.
  45. Zhang, X.W., Zuo, H., Liu, J.X., Chen, X.F. and Yang, Z.B. (2016), "Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval", Appl. Math. Model., 40(3), 1914-1928. https://doi.org/10.1016/j.apm.2015.09.036.
  46. Zhang, X.W., Chen, X.F., Wang, X.Z. and He, Z.J. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite. Elem. Anal. Des., 46(5), 416-427. https://doi.org/10.1016/j.finel.2010.01.002.
  47. Zhang, X.W., Gao, R.X., Yan, R.Q., Chen, X.F., Sun, C. and Yang, Z.B. (2016), "Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization", J. Sound. Vib., 375, 200-216. https://doi.org/10.1016/j.jsv.2016.04.018.
  48. Zhong, Y.T. and Xiang, J.W. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., 24(2),173-182. https://doi.org/10.12989/SSS.2019.24.2.173