과제정보
연구 과제 주관 기관 : Ministry of Science and Technology (MOST)
참고문헌
- ACI Committee 544 (1982), "State of the art report of fiber reinforced concrete", Concr. Int.: Des. Construct., 4(5), 9-30.
- ACI Committee 408 (2003), Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03), American Concrete Institute, Farmington Hills, Mich., U.S.A.
- ACI-318 (2014), Building Code Requirements for Reinforced Concrete and Commentary, American Concrete Institute, Farmington Hills, Mich., U.S.A.
- Ahmad, S., Pilakoutas, K., Rafi, M.M., Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. https://doi.org/10.12989/cac.2018.22.2.249.
- Alexandre Bogas J., Gomes, M.G., Real, S. (2014), "Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete: The influence of failure mechanism and concrete composition", Construct. Build Mater., 65, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.122.
- Al-Shannag, M.J. and Charif, A. (2017), "Bond behavior of steel bars embedded in concretes made with natural lightweight aggregates", J. King Saud U. Eng. Sci., 29, 365-372. https://doi.org/10.1016/j.jksues.2017.05.002.
- ASTM C150/C150M-15 (2015), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C33/C33M-13 (2013), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, www.astm.org.
- Bilek, V., Bonczkova, S., Hurta, J., Pytlik, D. and Mrovec, M. (2017), "Bond strength between reinforcing steel and different types of concrete", Procedia Eng., 190, 243-247. https://doi.org/10.1016/j.proeng.2017.05.333.
- Bilodeau, A., Kodur, V.K.R. and Hoff, G.C. (2004), "Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire", Cement Concrete Compos., 26, 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4.
- Campione, G., Cucchiara, C., Mendola, L.L. and Papia, M. (2005), "Steel-concrete bond in lightweight fiber reinforced concrete under monotonic and cyclic actions", Eng Struct, 27, 881-890. https://doi.org/10.1016/j.engstruct.2005.01.010.
- Chandra, S. and Berntsson, L. (2002), Lightweight Aggregate Concrete, Noyes Publications, New York, U.S.A.
- Choi, J.I., Lee, B.Y. (2015), "Bonding properties of basalt fiber and strength reduction according to fiber orientation", Materials, 8(10), 6719-6127. https://doi.org/10.3390/ma8105335.
- Dehestani, M., MoU.S.Avi, S.S. (2015), "Modified steel bar model incorporating bond-slip effects for embedded element method", Construct. Build Mater., 81, 284-290. https://doi.org/10.1016/j.conbuildmat.2015.02.027.
- Deng, Z.C., Jumbe, R.D., Yuan, C.X. (2014), "Bonding between high strength rebar and reactive powder concrete", Comput. Concrete, 13(3), 411-421. https://doi.org/10.12989/cac.2014.13.3.411.
- Ding, Y. and Kusterle, W. (2000), "Compressive stress-strain relationship of steel fibrereinforced concrete at early age", Cem Concr Res, 30, 1573-1579. https://doi.org/10.1016/S0008-8846(00)00348-3.
- Ding, Y., Azevedo, C., Aguiar, J.B., Jalali, S. (2012), "Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature", Construct. Build Mater., 26, 21-31. https://doi.org/10.1016/j.conbuildmat.2011.04.058.
- Gao, J., Suqa, W. and Morino, K. (1997), "Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete", Cem Concr Compos, 19, 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1.
- Golafshani, E.M., Rahai, A., Kebria, S.S.H. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Computers & Concrete, 14(3), 327-359. https://doi.org/10.12989/cac.2014.14.3.327.
- Hassanpour, M., Shafigh, P. and Mahmud, H.B. (2012), "Lightweight aggregate concrete fiber reinforcement - A review", Construct. Build Mater., 37, 452-461. https://doi.org/10.1016/j.conbuildmat.2012.07.071.
- Hossain, K.M.A. (2008), "Bond characteristics of plain and deformed bars in lightweight pumice concrete", Constr. Build. Mater., 22, 1491-1499. https://doi.org/10.1016/j.conbuildmat.2007.03.025
- Kim, N.W., Lee, H.H., Kim, C.H. (2016), "Fracture behavior of hybrid fiber reinforced concrete according to the evaluation of crack resistance and thermal", Comput. Concrete, 18(5), 685-696.
- Ko, J., Ryu, D., Noguchi, T. (2011), "The spalling mechanism of high-strength concrete under fire", Mag. Concr. Res., 63(5), 357-370. http://dx.doi.org/10.1680/macr.10.00002.
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Engineering, 1-15. https://doi.org/ 10.1155/2014/468510.
- Kurugol, S., Tanacan, L. and Ersoy, H.Y. (2008), "Young's modulus of fiber-reinforced and polymer-modified lightweight concrete composites", Constr Build Mater, 22, 1019-1028. https://doi.org/10.1016/j.conbuildmat.2007.03.017.
- Lee, H.H., Yi, S.T. (2016), "Structural performance evaluation of steel fiber reinforced concrete beams with recycled aggregates", Comput. Concrete, 18(5), 741-756. https://doi.org/10.4334/JKCI.2015.27.3.215.
- Li, V.C. (2002), "Large volume high performance applications of fibers in civil engineering", J. Appl. Polym. Sci., 83(3), 660-686. https://doi.org/10.1002/app.2263.
- Mehta, P.K., Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties, and Materials, 3rd edition, The McGraw-Hill Companies, Inc., New York, U.S.A.
- Mo, K.H., Alengaram, U.J., Visintin, P., Goh, S.H., Jumaat, M.Z. (2015), "Influence of lightweight aggregate on the bond properties of concrete with various strength grades", Construct. Build Mater., 84, 377-386. https://doi.org/10.1016/j.conbuildmat.2015.03.040.
- Newman, J. and Choo, B.S. (2003), Advanced Concrete Technology 2: Concrete Properties, 1st edition., Butterworth-Heinemann, United Kingdom.
- Nematzadeh, M., Poorhosein, R. (2017), "Estimating properties of reactive powder concrete containing hybrid fibers using UPV", Comput. Concrete, 20(4), 4915-502. https://doi.org/10.12989/cac.2017.20.4.491.
- Ozawa, M., Morimoto, M. (2014), "Effects of various fibres on high-temperature spalling in high-performance concrete", Construct. Build Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068.
- Poon, C.S., Shui, Z.H., Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34, 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011.
- Saleem, M. (2017), "Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method", Struct. Eng. Mech., 64(4), 427-436. https://doi.org/10.12989/sem.2017.64.4.427.
- Siddique, R. and Kaur, D. (2012), "Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures", J. Adv. Res., 3, 45-51. https://doi.org/10.1016/j.jare.2011.03.004.
- Somayaji, S. (2001), Civil Engineering Materials, 3rd edition, Prentice Hall, New Jersey, U.S.A.
- Soroushian, P., Mirza, F., Alhozaimy, A. (1994), "Bonding of confined steel fiber reinforced concrete to deformed bars", ACI Mater. J., 91(2), 144-149.
- Tang, C.W. (2015), "Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete", Comput. Concrete, 16(3), 449-466. http://dx.doi.org/10.12989/cac.2015.16.3.449.
- Tang, C.W. (2017), "Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete", Struct. Eng. Mech., 62(5), 651-661. https://doi.org/10.12989/sem.2017.62.5.651.
- Tang, C.W. (2018), "Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures", Struct. Eng. Mech., 66(4), 477-485. https://doi.org/10.12989/sem.2018.66.4.477.
- Xiong, M.X., Richard Liew, J.Y. (2015), "Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures", Materiales de Construccion, 65, 320. https://doi.org/10.3989/mc.2015.00715.
- Xu, M., Hallinan, B., Wille, K. (2016), "Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete", Cement Concrete Compos., 70, 98-109. https://doi.org/10.1016/j.cemconcomp.2016.03.014.
- Yan, Z., Shen, Y., Zhu, H., Li, X., Lu, Y. (2015), "Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature", Fire Safety J., 71, 86-99. https://doi.org/10.1016/j.firesaf.2014.11.009.
- Zhang, H., Yu, R.C. (2016), "Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study", Materials, 9(10), 800. https://doi.org/10.3390/ma9100800.