DOI QR코드

DOI QR Code

A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation

  • Shamshirsaz, Mahnaz (New Technologies Research Center, Amirkabir University of Technology) ;
  • Sharafi, Shahin (New Technologies Research Center, Amirkabir University of Technology) ;
  • Rahmatian, Javad (New Technologies Research Center, Amirkabir University of Technology) ;
  • Rahmatian, Sajad (New Technologies Research Center, Amirkabir University of Technology) ;
  • Sepehry, Naserodin (New Technologies Research Center, Amirkabir University of Technology)
  • Received : 2019.05.08
  • Accepted : 2019.10.15
  • Published : 2020.02.25

Abstract

In this present paper, a semi-analytical mesh-free method is employed for the three-dimensional free vibration analysis of a bi-directional functionally graded piezoelectric circular structure. The dependent variables have been expanded by Fourier series with respect to the circumferential direction and have been discretized through radial and axial directions based on the mesh-free shape function. The current approach has a distinct advantage. The nonlinear Green-Lagrange strain is employed as the relationship between strain and displacement fields to observe thermal impacts in stiffness matrices. Nevertheless, high order terms have been neglected at the final steps of equations driving. The material properties are assumed to vary continuously in both radial and axial directions simultaneously in accordance with a power law distribution. The convergence and validation studies are conducted by comparing our proposed solution with available published results to investigate the accuracy and efficiency of our approach. After the validation study, a parametric study is undertaken to investigate the temperature effects, different types of polarization, mechanical and electric boundary conditions and geometry parameters of structures on the natural frequencies of functionally graded piezoelectric circular structures.

Keywords

References

  1. Allahverdizadeh, A., Naei, M. and Bahrami, M.N. (2008), "Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates", J. Mech. Sci., 50(3), 445-454. https://doi.org/10.1016/j.ijmecsci.2007.09.018.
  2. Almajid, A., Taya, M., Takagi, K., Li, J.-F. and Watanabe, R. (2002). "Fabrication and modeling of porous FGM piezoelectric actuators", Smart Structures and Materials 2002: Smart Structures and Integrated Systems, 5764. https://doi.org/10.1117/12.474683
  3. Amini, Y., Emdad, H. and Farid, M. (2015), "Finite element modeling of functionally graded piezoelectric harvesters", Compos. Struct., 129, 165-176. https://doi.org/10.1016/j.compstruct.2015.04.011.
  4. Asgari, M. and Akhlaghi, M. (2010), "Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length", Arch. Appl. Mech., 80(4), 353-376. https://doi.org/10.1007/s00419-009-0321-2.
  5. Atluri, S.N., Kim, H.-G. and Cho, J.Y. (1999), "A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods", Comput. Mech., 24(5), 348-372. https://doi.org/10.1007/s004660050457.
  6. Behjat, B. and Khoshravan, M. (2012), "Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates", Compos. Struct., 94(3), 874-882. https://doi.org/10.1016/j.compstruct.2011.08.024.
  7. Behjat, B., Salehi, M., Sadighi, M., Armin, A. and Abbasi, M. (2009), "Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method", J. Intelligent Mater. Syst. Struct., 20(13), 1635-1646. https://doi.org/10.1177/1045389X09104113.
  8. Benlahcen, F., Belakhdar, K., Sellami, M. and Tounsi, A. (2018), "Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation", Steel Compos. Struct., 29(5), 591-602. http://dx.doi.org/10.12989/scs.2017.25.2.187.
  9. Bodaghi, M., Damanpack, A., Aghdam, M. and Shakeri, M. (2012), "Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers", Compos. Struct., 94(12), 3612-3623. https://doi.org/10.1016/j.compstruct.2012.06.001.
  10. Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
  11. Chuaqui, T. and Roque, C. (2017), "Analysis of functionally graded piezoelectric Timoshenko smart beams using a multiquadric radial basis function method", Compos. Struct., 176, 640-653. https://doi.org/10.1016/j.compstruct.2017.05.062.
  12. Dai, H.-L. and Rao, Y.-N. (2011), "Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres", Struct. Eng. Mech., 40(1), 49-64. http://dx.doi.org/10.12989/sem.2011.40.1.049.
  13. Foroutan, M., Mohammadi, F., Alihemati, J. and Soltanimaleki, A. (2017), "Dynamic analysis of functionally graded piezoelectric cylindrical panels by a three-dimensional mesh-free model", J. Intelligent Mater. Syst. Struct., 28(18), 2516-2527. https://doi.org/10.1177/1045389X17689941.
  14. Ghasemabadian, M. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. http://dx.doi.org/10.12989/sem.2016.60.2.271.
  15. Jodaei, A., Jalal, M. and Yas, M. (2013), "Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates via SSDQM and comparative modeling by ANN", Math. Comput. Model., 57(5-6), 1408-1425. https://doi.org/10.1016/j.mcm.2012.12.002.
  16. Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. http://dx.doi.org/10.12989/scs.2018.28.6.735.
  17. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  18. Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186. https://doi.org/10.1088/0964-1726/9/2/309
  19. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
  20. Larkin, K. and Abdelkefi, A. (2019), "Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters", Compos. Struct., 213, 25-36. https://doi.org/10.1016/j.compstruct.2019.01.067.
  21. Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010.
  22. Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
  23. Liu, C.-F. and Lee, Y.-T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791.
  24. Liu, G.-R. and Gu, Y.-T. (2005), An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, Germany.
  25. Lu, C., Lim, C.W. and Chen, W. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", J. Numeric. Methods Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555.
  26. Mikaeeli, S. and Behjat, B. (2016), "Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method", Compos. Struct., 154, 591-599. https://doi.org/10.1016/j.compstruct.2016.07.067.
  27. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. http://dx.doi.org/10.12989/scs.2018.29.3.363.
  28. Nie, G. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Methods Appl. Mech. Eng., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028.
  29. Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009.
  30. Priya, S. and Inman, D.J. (2009), Energy Harvesting Technologies, Springer, Germany. https://doi.org/10.1007/978-0- 387-76464-1.
  31. Qian, L. and Batra, R. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. https://doi.org/10.1016/j.jsv.2004.01.042.
  32. Qiu, J., Tani, J., Ueno, T., Morita, T., Takahashi, H. and Du, H. (2003), "Fabrication and high durability of functionally graded piezoelectric bending actuators", Smart Mater. Struct., 12(1), 115. https://doi.org/10.1088/0964-1726/12/1/313.
  33. Sheng, G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024.
  34. Tsai, Y.-H. and Wu, C.-P. (2008), "Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions", J. Eng. Sci., 46(9), 843-857. https://doi.org/10.1016/j.ijengsci.2008.03.005.
  35. Wang, Y., Xu, R. and Ding, H. (2010), "Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads", Acta Mechanica, 215(1-4), 287-305. https://doi.org/10.1007/s00707-010-0332-7.
  36. Wu, C.-P. and Huang, H.-Y. (2019), "A semianalytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells", Mech. Based Design Struct. Machines, 1-26. https://doi.org/10.1080/15397734.2019.1636657.
  37. Wu, C.-P. and Li, H.-Y. (2013), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34(1), 27-62. DOI:10.3970/cmc.2013.034.027.
  38. Wu, C.-P. and Liu, Y.-C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031.
  39. Wu, C.-P. and Liu, Y.-C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  40. Wu, C.-P. and Tsai, Y.-H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95. https://doi.org/10.1007/s10665-008-9234-2.
  41. Wu, C.-P. and Yang, S.-W. (2011), "A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders", J. Intelligent Mater. Syst. Struct., 22(17), 1993-2007. https://doi.org/10.1177/1045389X11421822.
  42. Wu, C.C., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. American Ceramic Soc., 79(3), 809-812. https://doi.org/10.1111/j.11512916.1996.tb07951.x.
  43. Wu, X.-H., Shen, Y.-P. and Chen, C. (2003), "An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators", Mater. Lett., 57(22-23), 3532-3542. https://doi.org/10.1016/S0167-577X(03)00121-6.
  44. Xiong, Q.-l. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. http://dx.doi.org/10.12989/scs.2017.25.2.187.
  45. Yas, M. and Moloudi, N. (2015), "Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method", Appl. Math. Mech., 36(4), 439-464. https://doi.org/10.1007/s10483-015-1923-9.
  46. Zhong, Z. and Shang, E. (2003), "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", J. Solids Struct., 40(20), 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9.
  47. Zhu, X. and Meng, Z. (1995), "Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator", Sensors Actuators A Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.