References
- Allahverdizadeh, A., Naei, M. and Bahrami, M.N. (2008), "Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates", J. Mech. Sci., 50(3), 445-454. https://doi.org/10.1016/j.ijmecsci.2007.09.018.
- Almajid, A., Taya, M., Takagi, K., Li, J.-F. and Watanabe, R. (2002). "Fabrication and modeling of porous FGM piezoelectric actuators", Smart Structures and Materials 2002: Smart Structures and Integrated Systems, 5764. https://doi.org/10.1117/12.474683
- Amini, Y., Emdad, H. and Farid, M. (2015), "Finite element modeling of functionally graded piezoelectric harvesters", Compos. Struct., 129, 165-176. https://doi.org/10.1016/j.compstruct.2015.04.011.
- Asgari, M. and Akhlaghi, M. (2010), "Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length", Arch. Appl. Mech., 80(4), 353-376. https://doi.org/10.1007/s00419-009-0321-2.
- Atluri, S.N., Kim, H.-G. and Cho, J.Y. (1999), "A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods", Comput. Mech., 24(5), 348-372. https://doi.org/10.1007/s004660050457.
- Behjat, B. and Khoshravan, M. (2012), "Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates", Compos. Struct., 94(3), 874-882. https://doi.org/10.1016/j.compstruct.2011.08.024.
- Behjat, B., Salehi, M., Sadighi, M., Armin, A. and Abbasi, M. (2009), "Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method", J. Intelligent Mater. Syst. Struct., 20(13), 1635-1646. https://doi.org/10.1177/1045389X09104113.
- Benlahcen, F., Belakhdar, K., Sellami, M. and Tounsi, A. (2018), "Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation", Steel Compos. Struct., 29(5), 591-602. http://dx.doi.org/10.12989/scs.2017.25.2.187.
- Bodaghi, M., Damanpack, A., Aghdam, M. and Shakeri, M. (2012), "Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers", Compos. Struct., 94(12), 3612-3623. https://doi.org/10.1016/j.compstruct.2012.06.001.
- Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.
- Chuaqui, T. and Roque, C. (2017), "Analysis of functionally graded piezoelectric Timoshenko smart beams using a multiquadric radial basis function method", Compos. Struct., 176, 640-653. https://doi.org/10.1016/j.compstruct.2017.05.062.
- Dai, H.-L. and Rao, Y.-N. (2011), "Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres", Struct. Eng. Mech., 40(1), 49-64. http://dx.doi.org/10.12989/sem.2011.40.1.049.
- Foroutan, M., Mohammadi, F., Alihemati, J. and Soltanimaleki, A. (2017), "Dynamic analysis of functionally graded piezoelectric cylindrical panels by a three-dimensional mesh-free model", J. Intelligent Mater. Syst. Struct., 28(18), 2516-2527. https://doi.org/10.1177/1045389X17689941.
- Ghasemabadian, M. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. http://dx.doi.org/10.12989/sem.2016.60.2.271.
- Jodaei, A., Jalal, M. and Yas, M. (2013), "Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates via SSDQM and comparative modeling by ANN", Math. Comput. Model., 57(5-6), 1408-1425. https://doi.org/10.1016/j.mcm.2012.12.002.
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. http://dx.doi.org/10.12989/scs.2018.28.6.735.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186. https://doi.org/10.1088/0964-1726/9/2/309
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
- Larkin, K. and Abdelkefi, A. (2019), "Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters", Compos. Struct., 213, 25-36. https://doi.org/10.1016/j.compstruct.2019.01.067.
- Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010.
- Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
- Liu, C.-F. and Lee, Y.-T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791.
- Liu, G.-R. and Gu, Y.-T. (2005), An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, Germany.
- Lu, C., Lim, C.W. and Chen, W. (2009), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", J. Numeric. Methods Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555.
- Mikaeeli, S. and Behjat, B. (2016), "Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method", Compos. Struct., 154, 591-599. https://doi.org/10.1016/j.compstruct.2016.07.067.
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. http://dx.doi.org/10.12989/scs.2018.29.3.363.
- Nie, G. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Methods Appl. Mech. Eng., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028.
- Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Model., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009.
- Priya, S. and Inman, D.J. (2009), Energy Harvesting Technologies, Springer, Germany. https://doi.org/10.1007/978-0- 387-76464-1.
- Qian, L. and Batra, R. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. https://doi.org/10.1016/j.jsv.2004.01.042.
- Qiu, J., Tani, J., Ueno, T., Morita, T., Takahashi, H. and Du, H. (2003), "Fabrication and high durability of functionally graded piezoelectric bending actuators", Smart Mater. Struct., 12(1), 115. https://doi.org/10.1088/0964-1726/12/1/313.
- Sheng, G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34(9), 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024.
- Tsai, Y.-H. and Wu, C.-P. (2008), "Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions", J. Eng. Sci., 46(9), 843-857. https://doi.org/10.1016/j.ijengsci.2008.03.005.
- Wang, Y., Xu, R. and Ding, H. (2010), "Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads", Acta Mechanica, 215(1-4), 287-305. https://doi.org/10.1007/s00707-010-0332-7.
- Wu, C.-P. and Huang, H.-Y. (2019), "A semianalytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells", Mech. Based Design Struct. Machines, 1-26. https://doi.org/10.1080/15397734.2019.1636657.
- Wu, C.-P. and Li, H.-Y. (2013), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34(1), 27-62. DOI:10.3970/cmc.2013.034.027.
- Wu, C.-P. and Liu, Y.-C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031.
- Wu, C.-P. and Liu, Y.-C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Wu, C.-P. and Tsai, Y.-H. (2009), "Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation", J. Eng. Math., 63(1), 95. https://doi.org/10.1007/s10665-008-9234-2.
- Wu, C.-P. and Yang, S.-W. (2011), "A semi-analytical element-free Galerkin method for the 3D free vibration analysis of multilayered FGM circular hollow cylinders", J. Intelligent Mater. Syst. Struct., 22(17), 1993-2007. https://doi.org/10.1177/1045389X11421822.
- Wu, C.C., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. American Ceramic Soc., 79(3), 809-812. https://doi.org/10.1111/j.11512916.1996.tb07951.x.
- Wu, X.-H., Shen, Y.-P. and Chen, C. (2003), "An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators", Mater. Lett., 57(22-23), 3532-3542. https://doi.org/10.1016/S0167-577X(03)00121-6.
- Xiong, Q.-l. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. http://dx.doi.org/10.12989/scs.2017.25.2.187.
- Yas, M. and Moloudi, N. (2015), "Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method", Appl. Math. Mech., 36(4), 439-464. https://doi.org/10.1007/s10483-015-1923-9.
- Zhong, Z. and Shang, E. (2003), "Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate", J. Solids Struct., 40(20), 5335-5352. https://doi.org/10.1016/S0020-7683(03)00288-9.
- Zhu, X. and Meng, Z. (1995), "Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator", Sensors Actuators A Phys., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.