DOI QR코드

DOI QR Code

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina (Faculty of Civil Engineering, University of Sarajevo) ;
  • Ibrahimbegovic, Adnan (Laboratoire Roberval, Universite de Technologie de Compiegne / Sorbonne Universites) ;
  • Dolarevic, Samir (Faculty of Civil Engineering, University of Sarajevo)
  • 투고 : 2019.07.09
  • 심사 : 2020.01.13
  • 발행 : 2020.02.25

초록

In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

키워드

과제정보

연구 과제 주관 기관 : French Embassy in Sarajevo

참고문헌

  1. Allman, D. (1984), "Compatible triangular element including vertex rotations for plane elasticity analysis", Comput. Struct., 19, 1-8. https://doi.org/10.1016/0045-7949(84)90197-4.
  2. Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30, 483-492. https://doi.org/10.12989/scs.2019.30.5.483.
  3. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  4. Bradford, M.A. and Liu, X. (2016), "Flexural-torsional buckling of high-strength steel beams", J. Constr. Steel Res., 124, 122-131. https://doi.org/10.1016/j.jcsr.2016.05.009.
  5. Chajes, A. (1974), Principles of Structural Stability, Prentice Hall College Div., New Jersey, USA.
  6. Ellobodya, E. (2017), "Interaction of buckling modes in railway plate girder steel bridges", Thin Wall. Struct., 115, 58-75. https://doi.org/10.1016/j.tws.2016.12.007.
  7. Eurocode 3 (2006), Design of Steel Structure s-Part 1-5: Plated Structural Elements, EN 1993-1-5:2006 E, CEN-European Comitee for Standardization.
  8. Goncalves, R. (2019), "An assessment of the lateral-torsional buckling and post-buckling behaviour of steel I-section beams using a geometrically exact beam finite element", Thin Wall. Struct., 143, 106-222. https://doi.org/10.1016/j.tws.2019.106222.
  9. Hendy, C. and Murphy, C. (2007), Designers' Guide to EN 1993-2, Steel Bridges, Thomas Telford, UK.
  10. Ibrahimbegovic, A. and Frey, F. (1995), "Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity", Int. J. Numer. Meth. Eng., 38, 1885-1900. https://doi.org/10.1002/nme.1620381106.
  11. Ibrahimbegovic, A. (1994), "Stress resultant geometrically nonlinear shell theory with drilling rotations. Part I: A consistent formulation", Comput. Meth. Appl. Mech. Eng., 118, 265-284. https://doi.org/10.1016/0045-7825(94)90003-5.
  12. Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F.
  13. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
  14. Ibrahimbegovic, A. and Fray, F. (1993), "Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams", Int. J. Numer. Meth. Eng., 36, 3239-3258. https://doi.org/10.1002/nme.1620361903.
  15. Ibrahimbegovic, A. and Frey, F. (1994a), "Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II. Computational aspects", Comput. Meth. Appl. Mech. Eng., 118, 285-308. https://doi.org/10.1016/0045-7825(94)90004-3.
  16. Ibrahimbegovic, A. and Frey, F. (1994b), "Stress resultant geometrically nonlinear shell theory with drilling rotations. Part III: Linearized kinematics", Int. J. Numer. Meth. Eng., 37, 3659-3683. https://doi.org/10.1016/0045-7825(94)90004-3.
  17. Ibrahimbegovic, A. and Wilson, E. L. (1991), "A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom", Commun. Appl. Numer. Meth., 7, 1-9. https://doi.org/10.1002/cnm.1630070102.
  18. Ibrahimbegovic, A. and Wilson, E.L. (1990), "Automated truncation of Ritz vector basis in modal transformation", ASCE J. Eng. Mech. Div., 116, 2506-2520. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2506).
  19. Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990a), "Ritz method for dynamic analysis of linear systems with non-proportional damping", Int. J. Earthq. Eng. Struct. Dyn., 19, 877-889. https://doi.org/10.1002/eqe.4290190608.
  20. Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupl. Syst. Mech., 2, 349-374. https://doi.org/10.12989/csm.2013.2.4.349.
  21. Ibrahimbegovic, A., Shakourzadeh, H., Batoz, J.L., Al Mikdad, M. and Guo, Y.Q. (1996), "On the role of the geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structure", Comput. Struct., 61, 1101-1114. https://doi.org/10.1016/0045-7949(96)00181-2.
  22. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust membrane quadrilateral element with drilling degrees of freedom", Int. J. Numer. Meth. Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305.
  23. Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2017), "Nonlinear kinematics Reissner's beam with combined hardening/softening elastoplasticity", Comput. Struct., 189, 12-20. https://doi.org/10.1016/j.compstruc.2017.04.011.
  24. Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2018), "Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics", Coupl. Syst. Mech., 7, 555-581. https://doi.org/10.12989/csm.2018.7.5.555.
  25. Kala, Z. (2015), "Sensitivity and reliability analyses of lateral-torsional buckling resistance of steel beams", Arch. Civil Mech. Eng., 15, 1098-1107. https://doi.org/10.1016/j.acme.2015.03.007.
  26. Kala, Z. and Vales, J. (2017), "Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations", Eng. Struct., 134, 37-47. https://doi.org/10.1016/j.engstruct.2016.12.032.
  27. Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical conditions", Coupl. Syst. Mech., 3, 89-110. https://doi.org/10.12989/csm.2014.3.1.089.
  28. Ozbasaran, H. and Yilmaz, T. (2018), "Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints", J. Constr. Steel Res., 143, 119-130. https://doi.org/10.1016/j.jcsr.2017.12.022.
  29. Sahraei, A. and Mohareb, M. (2019), "Lateral torsional buckling analysis of moment resisting plane frames", Thin Wall. Struct., 134, 233-254. https://doi.org/10.1016/j.tws.2018.10.006.
  30. Saliba, N. and Gardner, L. (2013), "Experimental study of the shear response of lean duplex stainless steel plate girders", Eng. Struct., 46, 375-391. https://doi.org/10.1016/j.engstruct.2012.07.029.
  31. Serror, M.H., Hamed, A.N. and Mourad, S.A. (2016), "Numerical study on buckling of steel web plates with openings", Steel Compos. Struct., 22, 1417-1443. https://doi.org/10.12989/scs.2016.22.6.1417.
  32. Timoshenko, S. and Gere, J. (1962), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA.
  33. Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York, NY, USA.
  34. Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells, Marcel Dekker, New York, USA.
  35. Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method, Vols. I, II, III, Elsevier, Oxford, UK.

피인용 문헌

  1. Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.079