Acknowledgement
Supported by : French Embassy in Sarajevo
References
- Allman, D. (1984), "Compatible triangular element including vertex rotations for plane elasticity analysis", Comput. Struct., 19, 1-8. https://doi.org/10.1016/0045-7949(84)90197-4.
- Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30, 483-492. https://doi.org/10.12989/scs.2019.30.5.483.
- Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey, USA.
- Bradford, M.A. and Liu, X. (2016), "Flexural-torsional buckling of high-strength steel beams", J. Constr. Steel Res., 124, 122-131. https://doi.org/10.1016/j.jcsr.2016.05.009.
- Chajes, A. (1974), Principles of Structural Stability, Prentice Hall College Div., New Jersey, USA.
- Ellobodya, E. (2017), "Interaction of buckling modes in railway plate girder steel bridges", Thin Wall. Struct., 115, 58-75. https://doi.org/10.1016/j.tws.2016.12.007.
- Eurocode 3 (2006), Design of Steel Structure s-Part 1-5: Plated Structural Elements, EN 1993-1-5:2006 E, CEN-European Comitee for Standardization.
- Goncalves, R. (2019), "An assessment of the lateral-torsional buckling and post-buckling behaviour of steel I-section beams using a geometrically exact beam finite element", Thin Wall. Struct., 143, 106-222. https://doi.org/10.1016/j.tws.2019.106222.
- Hendy, C. and Murphy, C. (2007), Designers' Guide to EN 1993-2, Steel Bridges, Thomas Telford, UK.
- Ibrahimbegovic, A. and Frey, F. (1995), "Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity", Int. J. Numer. Meth. Eng., 38, 1885-1900. https://doi.org/10.1002/nme.1620381106.
- Ibrahimbegovic, A. (1994), "Stress resultant geometrically nonlinear shell theory with drilling rotations. Part I: A consistent formulation", Comput. Meth. Appl. Mech. Eng., 118, 265-284. https://doi.org/10.1016/0045-7825(94)90003-5.
- Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
- Ibrahimbegovic, A. and Fray, F. (1993), "Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams", Int. J. Numer. Meth. Eng., 36, 3239-3258. https://doi.org/10.1002/nme.1620361903.
- Ibrahimbegovic, A. and Frey, F. (1994a), "Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II. Computational aspects", Comput. Meth. Appl. Mech. Eng., 118, 285-308. https://doi.org/10.1016/0045-7825(94)90004-3.
- Ibrahimbegovic, A. and Frey, F. (1994b), "Stress resultant geometrically nonlinear shell theory with drilling rotations. Part III: Linearized kinematics", Int. J. Numer. Meth. Eng., 37, 3659-3683. https://doi.org/10.1016/0045-7825(94)90004-3.
- Ibrahimbegovic, A. and Wilson, E. L. (1991), "A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom", Commun. Appl. Numer. Meth., 7, 1-9. https://doi.org/10.1002/cnm.1630070102.
- Ibrahimbegovic, A. and Wilson, E.L. (1990), "Automated truncation of Ritz vector basis in modal transformation", ASCE J. Eng. Mech. Div., 116, 2506-2520. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2506).
- Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990a), "Ritz method for dynamic analysis of linear systems with non-proportional damping", Int. J. Earthq. Eng. Struct. Dyn., 19, 877-889. https://doi.org/10.1002/eqe.4290190608.
- Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupl. Syst. Mech., 2, 349-374. https://doi.org/10.12989/csm.2013.2.4.349.
- Ibrahimbegovic, A., Shakourzadeh, H., Batoz, J.L., Al Mikdad, M. and Guo, Y.Q. (1996), "On the role of the geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structure", Comput. Struct., 61, 1101-1114. https://doi.org/10.1016/0045-7949(96)00181-2.
- Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust membrane quadrilateral element with drilling degrees of freedom", Int. J. Numer. Meth. Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305.
- Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2017), "Nonlinear kinematics Reissner's beam with combined hardening/softening elastoplasticity", Comput. Struct., 189, 12-20. https://doi.org/10.1016/j.compstruc.2017.04.011.
- Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2018), "Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics", Coupl. Syst. Mech., 7, 555-581. https://doi.org/10.12989/csm.2018.7.5.555.
- Kala, Z. (2015), "Sensitivity and reliability analyses of lateral-torsional buckling resistance of steel beams", Arch. Civil Mech. Eng., 15, 1098-1107. https://doi.org/10.1016/j.acme.2015.03.007.
- Kala, Z. and Vales, J. (2017), "Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations", Eng. Struct., 134, 37-47. https://doi.org/10.1016/j.engstruct.2016.12.032.
- Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical conditions", Coupl. Syst. Mech., 3, 89-110. https://doi.org/10.12989/csm.2014.3.1.089.
- Ozbasaran, H. and Yilmaz, T. (2018), "Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints", J. Constr. Steel Res., 143, 119-130. https://doi.org/10.1016/j.jcsr.2017.12.022.
- Sahraei, A. and Mohareb, M. (2019), "Lateral torsional buckling analysis of moment resisting plane frames", Thin Wall. Struct., 134, 233-254. https://doi.org/10.1016/j.tws.2018.10.006.
- Saliba, N. and Gardner, L. (2013), "Experimental study of the shear response of lean duplex stainless steel plate girders", Eng. Struct., 46, 375-391. https://doi.org/10.1016/j.engstruct.2012.07.029.
- Serror, M.H., Hamed, A.N. and Mourad, S.A. (2016), "Numerical study on buckling of steel web plates with openings", Steel Compos. Struct., 22, 1417-1443. https://doi.org/10.12989/scs.2016.22.6.1417.
- Timoshenko, S. and Gere, J. (1962), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA.
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, New York, NY, USA.
- Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells, Marcel Dekker, New York, USA.
- Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method, Vols. I, II, III, Elsevier, Oxford, UK.
Cited by
- Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.079