DOI QR코드

DOI QR Code

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M. (Al-Mustansiriah University, Engineering Collage) ;
  • Hamad, Luay Badr (Al-Mustansiriah University, Engineering Collage) ;
  • Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
  • Received : 2019.07.29
  • Accepted : 2019.10.27
  • Published : 2020.03.25

Abstract

Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Keywords

References

  1. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743.
  2. Alasadi, A.A., Ahmed, R.A. and Faleh, N.M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraft Spacecraft Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
  3. Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090.
  4. Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircraft Spacecraft Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://doi.org/10.12989/scs.2015.18.4.1063.
  6. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  7. Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircraft Spacecraft Sci., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
  8. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
  9. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
  10. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  11. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  12. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  13. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermomechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  14. Daneshmehr, A. and Rajabpoor, A. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017.
  15. Ebrahimi, F. and Barati, M.R. (2016a), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9.
  16. Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
  17. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  18. El-Hassar, S. M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  19. Elmerabet, A. H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a singlewalled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001.
  20. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  21. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  22. Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551.
  23. Lal, A., Jagtap, K.R and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  24. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  25. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  26. Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), 3063. https://doi.org/10.1088/0957-4484/17/12/042.
  27. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
  28. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  29. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
  30. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  31. Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
  32. Lim, C. W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  33. Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin microplate based on the modified strain gradient theory and the spline finite strip method", Eur. J. Mech. A/Solids, 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008.
  34. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  35. Sedighi, H.M., Daneshmand, F and Abadyan, M. (2015), "Modified model for instability analysis of symmetric FGM double-sided nano-bridge: corrections due to surface layer, finite conductivity and size effect", Compos. Struct., 132, 545-557. https://doi.org/10.1016/j.compstruct.2015.05.076.
  36. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102.
  37. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  38. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 1750008. https://doi.org/10.1142/S1758825117500089.
  39. Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin-Walled Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027.
  40. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  41. Zalesak, J., Bartosik, M., Daniel, R., Mitterer, C., Krywka, C., Kiener, D and Keckes, J. (2016), "Crosssectional structure-property relationship in a graded nanocrystalline Ti 1− x Al x N thin film", Acta Materialia, 102, 212-219. https://doi.org/10.1016/j.actamat.2015.09.007.
  42. Zenkour, A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199.
  43. Zenkour, A.M. and Abouelregal, A.E. (2014), "Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load", Coupled Syst. Mech., 3(1), 1-16. https://doi.org/10.12989/acd.2018.3.1.001.

Cited by

  1. An ES-MITC3 Finite Element Method Based on Higher-Order Shear Deformation Theory for Static and Free Vibration Analyses of FG Porous Plates Reinforced by GPLs vol.2020, 2020, https://doi.org/10.1155/2020/7520209
  2. Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893