DOI QR코드

DOI QR Code

Transient thermoelastic analysis of carbon/carbon composite multidisc brake using finite element method

  • Ghashochi-Bargh, Hadi (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University) ;
  • Goodarzi, Mohammad-Saeed (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University) ;
  • Karimi, Masoud (Department of Aerospace Engineering, Amirkabir University of Technology) ;
  • Salamat-Talab, Mazaher (Department of Mechanical Engineering, Arak University of Technology)
  • Received : 2019.02.02
  • Accepted : 2019.08.27
  • Published : 2020.03.25

Abstract

In the current paper, a generalization of the results of Zhao et al. (2008) on a new design of C/C composite multidisc brake system is presented. The purpose of this paper is to study the effect of thermal sensitivity of Carbon/Carbon (C/C) composite material on the temperature distributions, deformation, and stress during braking. In this regard, a transient temperature-displacement coupled analysis for C/C composite brake discs with frictional heat generation under simulated operating conditions is performed. An axisymmetric model for brake system is used for the finite element analysis according to the theory of energy transformation and transportation. The transient temperature distributions on the friction surfaces, deformation, and stress are obtained. To check the validity, the results are corroborated with other solutions available in the literature, wherever possible. The current study could be used as a guide in the initial design of a high performance multidisc brake system.

Keywords

References

  1. Adamowicz, A. and Grzes, P. (2012), "Convective cooling of a disc brake during single braking", Acta Mech. Autom., 6(2), 5-10.
  2. Alnaqi, A.A., Barton, D.C. and Brooks, P.C. (2015), "Reduced scale thermal characterization of automotive disc brake", Appl. Therm. Eng., 75, 658-668. https://doi.org/10.1016/j.applthermaleng.2014.10.001.
  3. Ambekar, A., Bharti, A., Shekar, S. and Biswas, A. (2017), "Thermo-structural analysis of disc brake for maximum heat dissipation", Proceedings of the 6th International Conference on Electronics, Computer and Manufacturing Engineering (ICECME'2017), Singapore, March.
  4. ANSYS Corporation Inc. (2012), ANSYS 14 User's Manual, ANSYS Corporation Inc.
  5. Bauzin, J.G., Keruzore, N., Laraqi, N., Gapin, A. and Diebold, J.F. (2018), "Identification of the heat flux generated by friction in an aircraft braking system", Int. J. Therm. Sci., 130, 449-456. https://doi.org/10.1016/j.ijthermalsci.2018.05.008.
  6. Belhocine, A. (2017), "FE prediction of thermal performance and stresses in an automotive disc brake system", Int. J. Adv. Manufact. Technol., 89(9-12), 3563-3578. https://doi.org/10.1007/s00170-016-9357-y.
  7. Belhocine, A., Abu Bakar, A.R. and Bouchetara, M. (2016), "Thermal and structural analysis of disc brake assembly during single stop braking event", Austral. J. Mech. Eng., 14(1), 26-38. https://doi.org/10.1080/14484846.2015.1093213.
  8. Belhocine, A. and Bouchetara, M. (2012a), "Thermal analysis of a solid brake disc", Appl. Therm. Eng., 32, 59-67. https://doi.org/10.1016/j.applthermaleng.2011.08.029.
  9. Belhocine, A. and Bouchetara, M. (2012b), "Thermal behavior of dry contacts in the brake discs", Int. J. Automot. Eng., 3(1), 9-17. https://doi.org/10.20485/jsaeijae.3.1_9.
  10. Centea, D., Rahnejat, H. and Menday, M.T. (2001), "Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder)", Appl. Math. Model., 25(3), 177-192. https://doi.org/10.1016/S0307-904X(00)00051-2.
  11. Choi, J.H., Han, J.H. and Lee, I. (2004), "Transient analysis of thermoelastic contact behaviors in composite multidisk brakes", J. Therm. Stresses, 27(12), 1149-1167. https://doi.org/10.1080/014957390523552.
  12. Choi, J.H. and Lee, I. (2004), "Finite element analysis of transient thermoelastic behaviors in disk brakes", Wear, 257(1-2), 47-58. https://doi.org/10.1016/j.wear.2003.07.008.
  13. Choi, J.H. and Lee, I. (2003), "Transient thermoelastic analysis of disk brakes in frictional contact", J. Therm. Stress., 26(3), 223-244. https://doi.org/10.1080/713855891.
  14. Cook, R.D., Malkus, D.S. and Plesha, M.E. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
  15. Ebrahimi, F. and Ebrahim Heidari, E. (2018), "Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects", Adv. Aircraft Spacecraft Sci., 5(3), 295-318. https://doi.org/10.12989/aas.2018.5.3.295.
  16. Ghadimi, B., Kowsary, F. and Khorami, M. (2013), "Thermal analysis of locomotive wheel-mounted brake disc", Appl. Therm. Eng., 51(1-2), 948-952. https://doi.org/10.1016/j.applthermaleng.2012.10.051.
  17. Gkinis, T., Rahmani, R., Rahnejat, H. and O'Mahony, M. (2018), "Heat generation and transfer in automotive dry clutch engagement", J. Zhejiang Univ. Sci. A, 19(3), 175-188. https://doi.org/10.1631/jzus.A1700481.
  18. Hsu, T.R. (2012), The Finite Element Method in Thermomechanics, Springer Science & Business Media.
  19. Jiang, L., Jiang, Y.L., Liang, Y.U., Nan, S.U. and Ding, Y.D. (2012), "Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling", Trans. Nonfer. Metals Soc. China, 22(11), 2783-2791. https://doi.org/10.1016/S1003-6326(11)61533-1.
  20. Lin, Y., Lafarie-Frenot, M.C., Bai, J. and Gigliotti, M. (2018), "Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates", Adv. Aircraft Spacecraft Sci., 5(6), 633-652. https://doi.org/10.12989/aas.2018.5.6.633.
  21. Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  22. Menday, M. and Rahnejat, H. (2010), Friction Lining Characteristics and the Clutch Take-Up Judder Phenomenon with Manual Transmission, in Tribology and Dynamics of Engine and Powertrain, Woodhead Publishing, 680-702.
  23. Mew, T.D., Kang, K.J., Kienhofer, F.W. and Kim, T. (2015), "Transient thermal response of a highly porous ventilated brake disc", Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 229(6), 674-683. https://doi.org/10.1177%2F0954407014567516.
  24. Papinniemi, A., Lai, J.C., Zhao, J. and Loader, L. (2002), "Brake squeal: A literature review", Appl. Acoust., 63(4), 391-400. https://doi.org/10.1016/S0003-682X(01)00043-3.
  25. Patil, S.R., Powar, K.P. and Sawant, S.M. (2016), "Thermal analysis of magnetorheological brake for automotive application", Appl. Therm. Eng., 98, 238-245. https://doi.org/10.1016/j.applthermaleng.2015.11.128.
  26. Shahzamanian, M.M., Sahari, B.B., Bayat, M., Ismarrubie, Z.N. and Mustapha, F. (2010), "Transient and thermal contact analysis for the elastic behavior of functionally graded brake disks due to mechanical and thermal loads", Mater. Des., 31(10), 4655-4665. https://doi.org/10.1016/j.matdes.2010.05.032.
  27. Talati, F. and Jalalifar, S. (2009), "Analysis of heat conduction in a disk brake system", Heat Mass Transfer, 45(8), 1047. https://doi.org/10.1007/s00231-009-0476-y.
  28. Yevtushenko, A.A. and Grzes, P. (2016), "Mutual influence of the sliding velocity and temperature in frictional heating of the thermally nonlinear disc brake", Int. J. Therm. Sci., 102, 254-262. https://doi.org/10.1016/j.ijthermalsci.2015.11.021.
  29. Yevtushenko, A., Kuciej, M. and Och, E. (2017), "Influence of thermal sensitivity of the materials on temperature and thermal stresses of the brake disc with thermal barrier coating", Int. Commun. Heat Mass Transfer, 87, 288-294. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.021.
  30. Zhang, S., Yin, J., Liu, Y., Liu, N., Sha, Z., Wang, Y. and Rolfe, B. (2018), "Thermal-structural coupling analysis of brake friction pair based on the displacement gradient circulation method", Adv. Mech. Eng., 10(5), 1-13. https://doi.org/10.1177%2F1687814018773816.
  31. Zhang, C., Zhang, L., Zeng, Q., Fan, S. and Cheng, L. (2011), "Simulated three-dimensional transient temperature field during aircraft braking for C/SiC composite brake disc", Mater. Des., 32(5), 2590-2595. https://doi.org/10.1016/j.matdes.2011.01.041.
  32. Zhao, S., Hilmas, G.E. and Dharani, L.R. (2008), "Behavior of a composite multidisk clutch subjected to mechanical and frictionally excited thermal load", Wear, 264(11-12), 1059-1068. https://doi.org/10.1016/j.wear.2007.08.012.