DOI QR코드

DOI QR Code

Multibody simulation and descent control of a space lander

  • Pagani, A. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Azzara, R. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Augello, R. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino) ;
  • Carrera, E. (Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
  • Received : 2019.02.12
  • Accepted : 2019.09.15
  • Published : 2020.03.25

Abstract

This paper analyzes the terminal descent phase of a space lander on a surface of a celestial body. A multibody approach is adopted to build the physical model of the lander and the surface. In this work, a legged landing gear system is considered. Opportune modelling of the landing gear crashbox is implemented in order to accurately predict the kinetic energy. To ensure the stability of the lander while impacting the ground and to reduce the contact forces that arise in this maneuver, the multibody model makes use of a co-simulation with a dedicated control system. Two types of control systems are considered; one with only position variables and the other with position and velocity variables. The results demonstrate the good reliability of modern multibody technology to incorporate control algorithms to carry out stability analysis of ground impact of space landers. Moreover, from a comparison between the two control systems adopted, it is shown how the velocity control leads to lower contact forces and fuel consumption.

Keywords

References

  1. Adams, M. (2003), "MSC. Software Corporation", Ann Arbor, Michigan.
  2. AlandiHallaj, M. and Assadian, N. (2017), "Soft landing on an irregular shape asteroid using Multiple- Horizon Multiple-Model Predictive Control", Acta Astronautica, 140, 225-234. https://doi.org/10.1016/j.actaastro.2017.08.019
  3. Arbor, A., Negrut, D. and Dyer, A. (2004), "Adams/solver primer",
  4. Arvidson, R., Squyres, S., Anderson, R., Bell, J., Blaney, D., Brueckner, J., Cabrol, N., Calvin, W.,Carr, M., Christensen, P. et al. (2006), "Overview of the spirit Mars exploration rover missionto Gusev Crater: Landing site to Backstay Rock in the Columbia Hills", Journal of GeophysicalResearch: Planets, 111(E2).
  5. Badescu, V. (2009), Mars: prospective energy and material resources, Springer Science & Business Media.
  6. Banerjee, A. (2003), "Contributions of multibody dynamics to space flight: a brief review", Journal of Guidance, Control, and Dynamics, 26(3), 385-394. https://doi.org/10.2514/2.5069
  7. Bayle, O., Lorenzoni, L., Blancquaert, T., Langlois, S., Walloschek, T., Portigliotti, S. and Capuano, M. (2011), "Exomars entry descent and landing demonstrator mission and design overview", Nasa Solar System.
  8. Blundell, M. and Harty, D. (2004), Multibody systems approach to vehicle dynamics, Elsevier.
  9. Cadogan, D., Sandy, C. and Grahne, M. (2002), "Development and evaluation of the Mars Pathnder in atable airbag landing system", Acta Astronautica, 50(10), 633-640. https://doi.org/10.1016/S0094-5765(01)00215-6
  10. Chu, C. (2006), "Development of advanced entry, descent, and landing technologies for future Mars missions", in "Aerospace Conference, 2006 IEEE", pages 8-pp.
  11. Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Z. and Caldwell, D. (2013), "Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach", .
  12. De Lafontaine, J. (1992), "Autonomous spacecraft navigation and control for comet landing", Journal of Guidance, Control, and Dynamics, 15(3), 567-576. https://doi.org/10.2514/3.20877
  13. Desai, P., Prince, J., Queen, E., Schoenenberger, M., Cruz, J. and Grover, M. (2011), "Entry, descent, and landing performance of the Mars Phoenix Lander", Journal of Spacecraft and Rockets, 48(5), 798-808. https://doi.org/10.2514/1.48239
  14. Dong, S., Luo, Y. and Zhao, Y. (2005), "Practical application and research advances of long-span space structures [J]", Spatial Structures, 4.
  15. Glassmeier, K., Boehnhardt, H., Koschny, D., Kuhrt, E. and Richter, I. (2007), "The Rosetta mission: flying towards the origin of the solar system", Space Science Reviews, 128(1-4), 1-21. https://doi.org/10.1007/s11214-006-9140-8
  16. Golombek, M., Cook, R., Economou, T., Folkner, W., Haldemann, A., Kallemeyn, P., Knudsen, J.M., Manning, R., Moore, H., Parker, T. et al. (1997), "Overview of the Mars Pathfinder mission and assessment of landing site predictions", Science, 278(5344), 1743-1748. https://doi.org/10.1126/science.278.5344.1743
  17. Gontier, C. and Li, Y. (1995), "Lagrangian formulation and linearization of multibody system equations", Computers & structures, 57(2), 317-331. https://doi.org/10.1016/0045-7949(94)00599-X
  18. Griffin, M. (2004), Space vehicle design, AIAA Education Series.
  19. Hofer, R., Randolph, T., Oh, D., Snyder, J. and De Grys, K. (2006), "Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions", in "42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit", page 4469.
  20. Kornfeld, R., Prakash, R., Devereaux, A., Greco, M., Harmon, C. and Kipp, D. (2014), "Verification and validation of the Mars Science Laboratory/Curiosity rover entry, descent, and landing system", Journal of Spacecraft and Rockets, 51(4), 1251-1269. https://doi.org/10.2514/1.A32680
  21. Kounaves, S., Hecht, M., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R., Boynton, W., Clark, B., Catling, D., Hredzak, P. et al. (2010), "Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results", Journal of Geophysical Research: Planets, 115(E1).
  22. Larson, J. and Pranke, L. (1999), Human spaceflight mission analysis and design (Space Technology Series), New York: McGrawl-Hill.
  23. Martella, P., Buonocore, M., Desiderio, D., Lovera, M. and Portigliotti, S. (2008), "Soft landing on Mars: The GNC tasks in the ExoMars descent module mission", in "7th International ESA Conference on Guidance, Navigation and Control Systems", pages 1-13.
  24. Mutch, T., Binder, A., Huck, F., Levinthal, E., Liebes, S., Morris, E., Patterson, W., Pollack, J., Sagan, C. and Taylor, G. (1976), "The Surface of Mars: There View from the Viking 1 Lander", Science, 193(4255), 791-801. https://doi.org/10.1126/science.193.4255.791
  25. O'Neill, G. (1974), "The colonization of space", in "Space Manufacturing Facilities", page 2041.
  26. Pagani, A., Augello, R., Governale, G. and Viglietti, A. (2019), "Drop Test Simulations of Composite Leaf Spring Landing Gears", Aerotecnica Missili e Spazio.
  27. Ramanan, R. and Lal, M. (2005), "Analysis of optimal strategies for soft landing on the moon from lunar parking orbits", Journal of earth system science, 114(6), 807-813. https://doi.org/10.1007/BF02715967
  28. Rew, D., Ju, G., Lee, S., Kim, K., Kang, S. and Lee, S. (2014), "Control system design of the Korean lunar lander demonstrator", Acta Astronautica, 94(1), 328-337. https://doi.org/10.1016/j.actaastro.2013.03.023
  29. Schiehlen, W. et al. (1990), Multibody systems handbook, volume 6, Springer.
  30. Sherman, M.A., Seth, A. and Delp, S. (2011), "Simbody: multibody dynamics for biomedical research", Procedia Iutam, 2, 241-261. https://doi.org/10.1016/j.piutam.2011.04.023
  31. Siddiqi, A.A. (2010), "Competing technologies, national narratives, and universal claims: Toward a global history of space exploration", Technology and Culture, 51(2), 425-443. https://doi.org/10.1353/tech.0.0459
  32. Simulink, M. and Natick, M. (1993), "The mathworks", .
  33. Squyres, S., Arvidson, R., Bollen, D., Bell III, J., Brueckner, J., Cabrol, N., Calvin, W., Carr, M., Christensen, P., Clark, B. et al. (2006), "Overview of the opportunity mars exploration rover mission to meridiani planum: Eagle crater to purgatory ripple", Journal of Geophysical Research: Planets, 111(E12).
  34. Stio, A., Spinolo, P., Carrera, E. and Augello, R. (2017), "Analysis of landing mission phases for robotic exploration on phobos mars moon", ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 4(5), 529-541. https://doi.org/10.12989/aas.2017.4.5.529
  35. Sullivan, T.A. and McKay, D.S. (1991), "Using space resources", NASA Technical Reports.
  36. Surkov, Y.A., Moskalyeva, L., Shcheglov, O., Kharyukova, V., Manvelyan, O., Kirichenko, V. and Dudin, A. (1983), "Determination of the elemental composition of rocks on Venus by Venera 13 and Venera 14 (preliminary results)", Journal of Geophysical Research: Solid Earth, 88(S02).
  37. Von Schwerin, R. (2012), Multibody system simulation: numerical methods, algorithms, and software, volume 7, Springer Science & Business Media.
  38. Zheng, G., Nie, H., Chen, J., Chen, C. and Lee, H. (2018), "Dynamic analysis of lunar lander during soft landing using explicit finite element method", Acta Astronautica, 148, 69-81. https://doi.org/10.1016/j.actaastro.2018.04.014