참고문헌
- Akhnazarova, S. and Kafarov, V. (1982), Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow.
- Asilturk, I. and Akkus, H. (2011), "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method", Meas., 44(9), 1697-1704. https://doi.org/10.1016/j.measurement.2011.07.003.
- Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2012), "Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel", J. Mech. Sci. Technol., 26(12), 4105-4114. https://doi.org/10.1007/s12206-012-0885-6.
- Bhardwaj B., Kumar R. and Singh P.K. (2014), "Prediction of surface roughness in turning of EN 353 using response surface methodology", Trans. Indi. Inst. Met., 67, 305-313. https://doi.org/doi:10.1007/s12666-013-0346-7.
- Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2018), "Analysis of cutting forces and roughness during hard turning of bearing steel", Struct. Eng. Mech., 66(3), 285-294. https://doi.org/doi: 10.12989/sem.2018.66.3.285.
- Cicek, A., Kivak, T. and Ekici, E. (2015), "Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills", J. Intel. Manuf., 26(2), 295-305. https://doi.org/10.1007/s10845-013-0783-5.
- Chae J., Park S.S. and Freiheit T. (2006), "Investigation of micro-cutting operations", Int. J. Mach. Tool. Manuf., 46, 313-332. https://doi.org/10.1016/j.ijmachtools.2005.05.015.
- Chakraborty, S. and Bordoloi, R. (2006), "Concurrent optimization of a computer vision systems multiple responses", Int. J. Adv. Manuf. Tech. 28, 577-583. https://doi.org/10.1007/s00170-004-2380-4.
- Dilbag, S.P. and Venkateswara, R.A. (2007), "A Surface roughness prediction model for hard turning process", J. Adv. Manuf. Technol., 32, 1115-1124. https://doi.org/10.1007/s00170-006-0429-2.
- Dimla, Sr D.E. (2004), "The impact of cutting conditions on cutting forces and vibration signals in turning with plane face geometry inserts", J. Mater. Process. Technol., 155, 1708-1715. https://doi.org/10.1016/j.jmatprotec.2004.04.148
- Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measur., 46(5),1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016.
- Junaid Mir, M. and Wani, M. F. (2018) "Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology", J. Ind. Eng. Comp., 9, 63-74. https://doi.org/10.5267/j.ijiec.2017.4.004.
- Kaladhar, M., Venkata Subbaiah, K. and Srinivasa Rao, Ch. (2012), "Parametric optimization during machining of AISI 304 austenitic stainless steel using CVD coated duratomictm cutting insert", Int. J. Indus. Eng. Comput., 3, 577-586. https://doi.org/10.5267/j.ijiec.2012.04.002.
- Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. http://dx.doi.org/10.12989/sem.2017.61.4.519.
- Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools", J. Ind. Eng. Comp., 8, 71-84. https://doi.org/10.5267/j.ijiec.2016.7.002.
- Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. (2019), "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration", Struct. Eng. Mech., 70(4), 395-405. https://doi.org/doi:10.12989/sem.2019.70.4.395.
- Kirby, E.D., Zhang, Z. and Chen, J.C. (2004), "Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques", J. Ind. Technol., 20, 1-8.
- Marinescu, I., Ispas, C. and Boboc, D. (2002), "Handbook of machine tool analysis", Marcel Dekker, New York.
- Meddour, I., Yallese, M.A., Khattabi, R., Elbah, M. and Boulanouar, L. (2015), "Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization", Int. J. Adv. Manuf. Technol., 77, 1387-1399. https://doi.org/10.1007/s00170-014-6559-z.
- Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons Inc, New York.
- Neseli, S., Yaldiz, S. and Turkes, E. (2011), "Optimization of tool geometry parameters for turning operations based on the response surface methodology", Meas., 44(3), 580-587. https://doi.org/10.1016/j.measurement.2010.11.018
- Saidi, R., Fathallah, B.B., Mabrouki, T., Belhadi, S. and Yallese, M. A. (2018), "Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function", Int. J. Adv. Manuf. Tech., 100, 2945-2968. https://doi.org/10.1007/s00170-018-2816-x.
- Sahoo, P., Pratap, A., and Bandyopadhyay, A. (2017), "Modeling and optimization of surface roughness and tool vibration in CNC turning of aluminum alloy using hybrid RSM-WPCA methodology", Int. J. Indus. Eng. Comput., 8(3), 385-398. https://doi.org/10.5267/j.ijiec.2016.11.003.
- Suresh, P., Rao, P.V. and Deshmukh, S. (2002), "A genetic algorithmic approach for optimization of surface roughness prediction model", Int. J. Mach. Tools Manuf., 42, 675-680. https://doi.org/10.1016/S0890-6955(02)00005-6.
- Thomas, M., Beauchamp, Y., Youssef, A.Y. and Masounave, J. (1996), "Effect of tool vibration on surface roughness during lathe dry turning process", Comput. Industrial Eng., 31(3-4), 637-644. https://doi.org/10.1016/S0360-8352(96)00235-5.
- Tounsi N. and Otho, A. (2000) "Identification of machine-tool- workpiece system dynamics", Int. J. Mach. Tool. Manuf., 40, 1367-1384. https://doi.org/10.1016/S0890-6955(99)00123-6.
- Umamaheswarrao, P., Ranga Raju, D., Suman, K.N.S and Ravi Sankar, B. (2018), "Hybrid optimal scheme for minimizing machining force and surface roughness in hard turning of AISI 52100 steel", Int. J. Eng. Sci. Tech., 11(3), 19-29. http://dx.doi.org/10.4314/ijest.v11i3.3.
- Upadhyay, V., Jain, P.K. and Mehta, N.K. (2013), "In-process prediction of surface roughness in turning of Ti-6Al-4V alloy usingcutting parameters and vibration signals", Meas, 46(1), 154-160. https://doi.org/10.1016/j.measurement.2012.06.002.
- Van Luttervelt, C., Childs, T., Jawahir, I., Klocke, F., Venuvinod, P. and Altintas, Y. (1998), "Present situation and future trends in modelling of machining operations progress report of the CIRP working group 'modelling of machining operations", CIRP Ann, 47, 587-626. https://doi.org/10.1016/S0007-8506 (07)63244-2.
- Yildirim, C.V., Kivak, T. and Erzincanli, F. (2019), "Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: a comparison of machining performance with different cooling methods", J. Brazilian Soc. Mech. Sci. Eng., 41(2), 83. https://doi.org/10.1007/s40430-019-1582-5.
피인용 문헌
- Multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.051