DOI QR코드

DOI QR Code

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Keblouti, Ouahid (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Boulanouar, Lakhdar (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Yallese, Mohamed Athmane (Mechanics and Structures Research Laboratory (LMS), May 8th 1945 University)
  • 투고 : 2019.06.22
  • 심사 : 2019.10.19
  • 발행 : 2020.03.10

초록

In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

키워드

참고문헌

  1. Akhnazarova, S. and Kafarov, V. (1982), Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow.
  2. Asilturk, I. and Akkus, H. (2011), "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method", Meas., 44(9), 1697-1704. https://doi.org/10.1016/j.measurement.2011.07.003.
  3. Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2012), "Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel", J. Mech. Sci. Technol., 26(12), 4105-4114. https://doi.org/10.1007/s12206-012-0885-6.
  4. Bhardwaj B., Kumar R. and Singh P.K. (2014), "Prediction of surface roughness in turning of EN 353 using response surface methodology", Trans. Indi. Inst. Met., 67, 305-313. https://doi.org/doi:10.1007/s12666-013-0346-7.
  5. Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2018), "Analysis of cutting forces and roughness during hard turning of bearing steel", Struct. Eng. Mech., 66(3), 285-294. https://doi.org/doi: 10.12989/sem.2018.66.3.285.
  6. Cicek, A., Kivak, T. and Ekici, E. (2015), "Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills", J. Intel. Manuf., 26(2), 295-305. https://doi.org/10.1007/s10845-013-0783-5.
  7. Chae J., Park S.S. and Freiheit T. (2006), "Investigation of micro-cutting operations", Int. J. Mach. Tool. Manuf., 46, 313-332. https://doi.org/10.1016/j.ijmachtools.2005.05.015.
  8. Chakraborty, S. and Bordoloi, R. (2006), "Concurrent optimization of a computer vision systems multiple responses", Int. J. Adv. Manuf. Tech. 28, 577-583. https://doi.org/10.1007/s00170-004-2380-4.
  9. Dilbag, S.P. and Venkateswara, R.A. (2007), "A Surface roughness prediction model for hard turning process", J. Adv. Manuf. Technol., 32, 1115-1124. https://doi.org/10.1007/s00170-006-0429-2.
  10. Dimla, Sr D.E. (2004), "The impact of cutting conditions on cutting forces and vibration signals in turning with plane face geometry inserts", J. Mater. Process. Technol., 155, 1708-1715. https://doi.org/10.1016/j.jmatprotec.2004.04.148
  11. Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measur., 46(5),1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016.
  12. Junaid Mir, M. and Wani, M. F. (2018) "Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology", J. Ind. Eng. Comp., 9, 63-74. https://doi.org/10.5267/j.ijiec.2017.4.004.
  13. Kaladhar, M., Venkata Subbaiah, K. and Srinivasa Rao, Ch. (2012), "Parametric optimization during machining of AISI 304 austenitic stainless steel using CVD coated duratomictm cutting insert", Int. J. Indus. Eng. Comput., 3, 577-586. https://doi.org/10.5267/j.ijiec.2012.04.002.
  14. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. http://dx.doi.org/10.12989/sem.2017.61.4.519.
  15. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools", J. Ind. Eng. Comp., 8, 71-84. https://doi.org/10.5267/j.ijiec.2016.7.002.
  16. Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. (2019), "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration", Struct. Eng. Mech., 70(4), 395-405. https://doi.org/doi:10.12989/sem.2019.70.4.395.
  17. Kirby, E.D., Zhang, Z. and Chen, J.C. (2004), "Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques", J. Ind. Technol., 20, 1-8.
  18. Marinescu, I., Ispas, C. and Boboc, D. (2002), "Handbook of machine tool analysis", Marcel Dekker, New York.
  19. Meddour, I., Yallese, M.A., Khattabi, R., Elbah, M. and Boulanouar, L. (2015), "Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization", Int. J. Adv. Manuf. Technol., 77, 1387-1399. https://doi.org/10.1007/s00170-014-6559-z.
  20. Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons Inc, New York.
  21. Neseli, S., Yaldiz, S. and Turkes, E. (2011), "Optimization of tool geometry parameters for turning operations based on the response surface methodology", Meas., 44(3), 580-587. https://doi.org/10.1016/j.measurement.2010.11.018
  22. Saidi, R., Fathallah, B.B., Mabrouki, T., Belhadi, S. and Yallese, M. A. (2018), "Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function", Int. J. Adv. Manuf. Tech., 100, 2945-2968. https://doi.org/10.1007/s00170-018-2816-x.
  23. Sahoo, P., Pratap, A., and Bandyopadhyay, A. (2017), "Modeling and optimization of surface roughness and tool vibration in CNC turning of aluminum alloy using hybrid RSM-WPCA methodology", Int. J. Indus. Eng. Comput., 8(3), 385-398. https://doi.org/10.5267/j.ijiec.2016.11.003.
  24. Suresh, P., Rao, P.V. and Deshmukh, S. (2002), "A genetic algorithmic approach for optimization of surface roughness prediction model", Int. J. Mach. Tools Manuf., 42, 675-680. https://doi.org/10.1016/S0890-6955(02)00005-6.
  25. Thomas, M., Beauchamp, Y., Youssef, A.Y. and Masounave, J. (1996), "Effect of tool vibration on surface roughness during lathe dry turning process", Comput. Industrial Eng., 31(3-4), 637-644. https://doi.org/10.1016/S0360-8352(96)00235-5.
  26. Tounsi N. and Otho, A. (2000) "Identification of machine-tool- workpiece system dynamics", Int. J. Mach. Tool. Manuf., 40, 1367-1384. https://doi.org/10.1016/S0890-6955(99)00123-6.
  27. Umamaheswarrao, P., Ranga Raju, D., Suman, K.N.S and Ravi Sankar, B. (2018), "Hybrid optimal scheme for minimizing machining force and surface roughness in hard turning of AISI 52100 steel", Int. J. Eng. Sci. Tech., 11(3), 19-29. http://dx.doi.org/10.4314/ijest.v11i3.3.
  28. Upadhyay, V., Jain, P.K. and Mehta, N.K. (2013), "In-process prediction of surface roughness in turning of Ti-6Al-4V alloy usingcutting parameters and vibration signals", Meas, 46(1), 154-160. https://doi.org/10.1016/j.measurement.2012.06.002.
  29. Van Luttervelt, C., Childs, T., Jawahir, I., Klocke, F., Venuvinod, P. and Altintas, Y. (1998), "Present situation and future trends in modelling of machining operations progress report of the CIRP working group 'modelling of machining operations", CIRP Ann, 47, 587-626. https://doi.org/10.1016/S0007-8506 (07)63244-2.
  30. Yildirim, C.V., Kivak, T. and Erzincanli, F. (2019), "Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: a comparison of machining performance with different cooling methods", J. Brazilian Soc. Mech. Sci. Eng., 41(2), 83. https://doi.org/10.1007/s40430-019-1582-5.

피인용 문헌

  1. Multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.051