Acknowledgement
Supported by : National Natural Science Foundation of China
This study is supported by the National Natural Science Foundation of China (Grant No. 51779031 and 41977219).
References
- Bagde, M.N. and Petroš, V. (2009), "Fatigue and dynamic energy behaviour of rock subjected to cyclical loading", Int. J. Rock Mech. Min. Sci., 46(1), 200-209. https://doi.org/10.1016/j.ijrmms.2008.05.002.
- Bratov, V. and Petrov, Y. (2007), "Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth", Int. J. Solids Struct., 44(7-8), 2371-2380. https://doi.org/10.1016/j.ijsolstr.2006.07.013.
- Bruning, T., Karakus, M., Nguyen, G.D. and Goodchild, D. (2018), "Experimental Study on the Damage Evolution of Brittle Rock Under Triaxial Confinement with Full Circumferential Strain Control", Rock Mech. Rock Eng., 51(11), 3321-3341. https://doi.org/10.1007/s00603-018-1537-7.
- Calleja, J. and Nemcik, J. (2016), "Coalburst Causes and Mechanisms", Proceedings of the Coal Operators Conference, Wollongong, Australia, February.
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
- Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(4), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.
- Fan, L. and Liu, S. (2017), "A conceptual model to characterize and model compaction behavior and permeability evolution of broken rock mass in coal mine gobs", Int. J. Coal Geol., 172, 60-70. https://doi.org/10.1016/j.coal.2017.01.017.
- Fan, L. and Liu, S. (2019), "Fluid-dependent shear slip behaviors of coal fractures and their implications on fracture frictional strength reduction and permeability evolutions", Int. J. Coal Geol., 212, 103235. https://doi.org/10.1016/j.coal.2019.103235.
- Gong, B., Jiang, Y. and Chen, L. (2019) "Feasibility investigation of the mechanical behavior of methane hydrate-bearing specimens using the multiple failure method", J. Nat. Gas. Sci. Eng., 102915. https://doi.org/10.1016/j.jngse.2019.102915.
- Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks". J. Geophys. Res. Solid Earth, 105(B7), 16683-16697. https://doi.org/10.1029/2000jb900085.
- Hebblewhite, B. and Galvin, J. (2017), "A review of the geomechanics aspects of a double fatality coal burst at Austar Colliery in NSW, Australia in April 2014", Int. J. Min. Sci. Technol., 27(1), 3-7. https://doi.org/10.1016/j.ijmst.2016.10.002.
- Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression", Fatigue Fract. Eng. Mater. Struct., 42(6), 1341-1356. https://doi.org/10.1111/ffe.12990.
- Jin, P.J., Wang, E.Y. and Song, D.Z. (2017), "Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory" Geomech. Eng., 12(4), 627-637. https://doi.org/10.12989/gae.2017.12.4.627.
- Jose, A., Sanchidrian, P.S. and Lopez, L.M. (2007), "Energy components in rock blasting", Int. J. Rock Mech. Min. Sci., 44(1), 130-147. https://doi.org/10.1016/j.ijrmms.2006.05.002.
- Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
- Li, Y.H., Peng, J.Y., Zhang, F.P. and Qiu, Z.G. (2016) "Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading", Eng. Geol., 213(4), 64-73. https://doi.org/10.1016/j.enggeo.2016.08.006.
- Lin, P., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017.
- Marek, U. (2009), "Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA", Proc. Earth Planet. Sci., 1(1), 54-59. https://doi.org/10.1016/j.proeps.2009.09.011.
- Mark, C. (2016), "Coal bursts in the deep longwall mines of the United States", Int. J. Coal Sci. Technol., 3(1), 1-9. https://doi.org/10.1007/s40789-016-0102-9.
- Mark, C. and Gauna, M. (2016), "Evaluating the risk of coal bursts in underground coal mines", Int. J. Min. Sci. Technol., 26(1), 47-52. https://doi.org/10.1016/j.ijmst.2015.11.009.
- Mu, W., Li, L., Yang, T., Yu, G. and Han, Y. (2019), "Numerical investigation on a grouting mechanism with slurry-rock coupling and shear displacement in a single rough fracture", Bull. Eng. Geol. Environ., 4, 1-19. https://doi.org/10.1007/s10064-019-01535-w.
- Munoz, H., Taheri, A. and Chanda, E.K. (2016), "Rock drilling performance evaluation by an energy dissipation based rock brittleness index", Rock Mech. Rock Eng., 49(8), 3343-3355. https://doi.org/10.1007/s00603-016-0986-0.
- Nugroho A. and Purnama A.B. (2015), "Displacement distribution model of andesite rock mass due to blasting activity using finite element method", Indo. Min. J., 18(2), 47-58. https://doi.org/10.30556/imj.Vol18.No2.2015.289.
- Park J.W., Park D., Ryu D.W., Choi B.H. and Park E.S. (2014), "Analysis on heat transfer and heat loss characteristics of rock cavern thermal energy storage", Eng. Geol., 181, 142-156. https://doi.org/10.1016/j.enggeo.2014.07.006.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Sagasta, F., Zitto, M.E., Piotrkowski, R., Benavent-Climent, A., Suarez, E. and Gallego, A. (2018), "Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings", Mech. Syst. Signal Proc., 102, 262-277. https://doi.org/10.1016/j.ymssp.2017.09.022.
- Sarfarazi, V., Haeri, H., Shemirani, A.B. and Nezamabadi, M.F. (2018), "A fracture mechanics simulation of the pre-holed concrete Brazilian discs", Struct. Eng. Mech., 66(3), 343-351. https://doi.org/10.12989/sem.2018.66.3.343.
- Singh, S.P. (1988), "Burst energy release index", Rock Mech. Rock Eng., 21(2), 149-155. https://doi.org/10.1007/BF01043119.
- Steffler, E.D., Epstein, J.S., and Conley, E.G. (2003), "Energy partitioning for a crack under remote shear and compression", Int. J. Fract., 120(4), 563-580. https://doi.org/10.1023/A:1025511703698.
- Sujatha, V. and Kishen, J.C. (2003), "Energy release rate due to friction at bimaterial interface in dams", J. Eng. Mech., 129(7), 793-800. https://doi.org/10.1061/(asce)0733-9399(2003)129:7(793).
- Wang, J., Ning, J.G, Qiu, P.Q., Yang, S. and Shang, H.F. (2019), "Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study", Geomech. Eng., 17(4), 375-383. https://doi.org/10.12989/gae.2019.17.4.375.
- Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded-sandstone: Use of acoustic emission", Ultrasonics, 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.
- Wong, R.H.C., Lin, P., and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017.
- Zhang, M.S., Wang, S.H., and Yang, Y. (2011), "Numerical simulation of jointed rock mass constitutive model and its validation", Eng. Mech., 28(5), 26-30. https://doi.org/10.1631/jzus.A1000257.
- Zitto, M.E., Piotrkowski, R., Gallego, A., Sagasta, F. and Benavent-Climent A. (2015), "Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission", Mech. Syst. Signal Proc., 60, 75-89. https://doi.org/10.1016/j.ymssp.2015.02.006.
Cited by
- The Study of the Supernormal Mechanical Properties of Giant NPR Anchor Cables vol.2020, 2020, https://doi.org/10.1155/2020/2621909
- Numerical Simulation on Heat Transfer Characteristics of Water Flowing through the Fracture of High-Temperature Rock vol.2020, 2020, https://doi.org/10.1155/2020/8864028
- Assessment of the Excavation Damaged Zones in the Surrounding Rock of an Underground Powerhouse under High In Situ Stress Using an Acoustic Velocity Detecting Method vol.2020, 2020, https://doi.org/10.1155/2020/7297260
- Infrared Temperature Law and Deformation Monitoring of Layered Bedding Rock Slope under Static Load vol.2020, 2020, https://doi.org/10.1155/2020/8818278
- Physical Modeling Test on Deformation and Failure of Rock Slope with New Support System vol.2020, 2020, https://doi.org/10.1155/2020/8825220
- Experimental and Optimization Study on the Sliding Force Monitoring and Early Warning System for High and Steep Slopes vol.2020, 2020, https://doi.org/10.1155/2020/9071935
- Failure characteristics of sandstone specimens with randomly distributed pre-cracks under uniaxial compression vol.79, pp.9, 2020, https://doi.org/10.1007/s12665-020-08933-4