DOI QR코드

DOI QR Code

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Li, Changfeng (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Chen, Zeng (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Liao, Zefeng (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Zhao, Guangming (School of Energy and Safety Engineering, Anhui University of Science and Technology) ;
  • Shi, Feng (School of Energy and Mining Engineering, China University of Mining and Technology Beijing) ;
  • Yu, Weijian (School of Resource and Environment and Safety Engineering, Hunan University of Science and Technology)
  • Received : 2019.02.11
  • Accepted : 2020.01.04
  • Published : 2020.01.25

Abstract

Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

We would like to thank the National Natural Science Foundation of China (No. 51574246), the National Key Research and Development Program of China (No. 2017YFC0804201), and Fundamental Research Funds for the Central Universities (No. 2011QZ01).

References

  1. Agletdinov, E., Pomponi, E., Merson, D. and Vinogradov, A. (2016), "A novel bayesian approach to acoustic emission data analysis", Ultrasonics, 72, 89-94. https://doi.org/10.1016/j.ultras.2016.07.014.
  2. Brady, B.T. (1969), "The nonlinear mechanical behavior of brittle rock part i-stress-strain behavior during regions i and ii", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 6(2), 211-225. https://doi.org/10.1016/0148-9062(69)90036-9.
  3. Carpinteri, A., Corrado, M. and Lacidogna, G. (2013), "Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies", Eng. Fail. Anal., 33, 236-250. https://doi.org/10.1016/j.engfailanal.2013.05.016.
  4. Carpinteri, A., Corrado, M. and Paggi, M. (2010), "An integrated cohesive/overlapping crack model for the analysis of flexural cracking and crushing in RC beams", Int. J. Fract., 161, 161-173. https://doi.org/10.1007/s10704-010-9450-4.
  5. Carpinteri, A., Lacidogna, G. and Corrado, M. (2016), "Cracking and crackling in concrete-like materials: A dynamic energy balance", Eng. Fail. Anal., 155, 130-144. https://doi.org/10.1016/j.engfracmech.2016.01.013.
  6. Carpinteri, A., Lacidogna, G. and Niccolini, G. (2006), "Critical behaviour in concrete structures and damage localization by acoustic emission", Key Eng. Mater., 312(11), 305-310. https://doi.org/10.4028/www.scientific.net/kem.312.305.
  7. Cook, N.G.W. (1992), "Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 29(3), 198-223. https://doi.org/10.1016/0148-9062(92)93656-5.
  8. Eberhardt, E. (1998), "Brittle rock fracture and progressive damage in uniaxial compression", Ph.D. Dissertation, University of Saskatchewan, Saskatoon, Canada.
  9. Frid, V. (2000), "Electromagnetic radiation method water-infusion control in rockburst-prone strata", J. Appl. Geophys., 43(1), 5-13. https://doi.org/10.1016/S0926-9851(99)00029-4.
  10. Frid, V. (2001), "Calculation of electromagnetic radiation criterion for rockburst hazard forecast in coal mines", Pure Appl. Geophys., 158(5-6), 931-944. https://doi.org/10.1007/PL00001214.
  11. Ganne, P., Vervoort, A. and Wevers, M. (2007), "Quantification of pre-peak brittle damage: correlation between acoustic emission and observed micro-fracturing", Int. J. Rock Mech. Min. Sci., 44(5), 720-729. https://doi.org/10.1016/j.ijrmms.2006.11.003.
  12. Geng, J., Sun, Q., Zhang, Y., Cao, L. and Zhang, W. (2017), "Studying the dynamic damage failure of concrete based on acoustic emission", Constr. Build. Mater., 149, 9-16. https://doi.org/10.1016/j.conbuildmat.2017.05.054.
  13. Ghorbani, A., Hasanzadehshooiili, H., Sadowski, L. (2018), "Neural prediction of tunnels' support pressure in elasto-plastic, strain-softening rock mass", Appl. Sci., 8(5), 841. https://doi.org/10.3390/app8050841.
  14. Goufo, E.F.D. and Kubeka, A. (2018), "Approximation result for non-autonomous and non-local rock fracture models", Jap. J. Industr. Appl. Math., 35(1), 217-233. https://doi.org/10.1007/s13160-017-0287-3.
  15. Hill, F.G., Cook, N.G.W., Hoek, E., Pretoriu, J.P., Ortlepp, W. and Salamon, M. (1966), "Rock mechanics applied to study of rockbursts", J. S. Afr. Inst. Min., 35(1), 435-528.
  16. Kang, Y., Ni, P., Fu, C. and Zhang, P. (2017), "Estimation of damage location of rock based on denoised acoustic emission signals using wavelet packet algorithm", Geotech. Test. J., 40(6), 963-977. https://doi.org/10.1520/GTJ20170029.
  17. Konicek, P. and Waclawik, P. (2018), "Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas", Tunn. Undergr. Sp. Technol., 81, 237-251. https://doi.org/10.1016/j.tust.2018.07.019.
  18. Li, N. and Jimenez, R. (2018), "A logistic regression classifier for long-term probabilistic prediction of rock burst hazard", Nat. Hazards, 90(1), 197-215. https://doi.org/10.1007/s11069-017-3044-7.
  19. Li, N., Feng, X. and Jimenez, R. (2017), "Predicting rock burst hazard with incomplete data using Bayesian networks", Tunn. Undergr. Sp. Technol., 61, 61-70. https://doi.org/10.1016/j.tust.2016.09.010.
  20. Lockner, D. (1993), "The role of acoustic emission in the study of rock fracture", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), 883-899.https://doi.org/10.1016/0148-9062(93)90041-B.
  21. Martin, C.D. (1993), "The strength of massive Lac du bonnet granite around underground opening", Ph.D. Dissertation, University of Manitoba, Winnipeg, Canada.
  22. Sato, K., Isobe, T., Mori, N. and Goto, T. (1986), "9. microseismic activity associated with hydraulic mining", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 23(1), 85-94. https://doi.org/10.1016/0148-9062(86)91669-4.
  23. Stanchits, S., Vinciguerra, S. and Dresen, G. (2006), "Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite", Pure Appl. Geophys., 163(5-6), 975-994. https://doi.org/10.1007/s00024-006-0059-5.
  24. Sun, X., Xu, H., He, M. and Zhang, F. (2017), "Experimental investigation of the occurrence of rockburst in a rock specimen through infrared thermography and acoustic emission", Int. J. Rock Mech. Min. Sci., 93, 250-259. https://doi.org/10.1016/j.ijrmms.2017.02.005.
  25. Vacek, J., Vacek, J. and Chocholousova, J. (2008), "Rock burst mechanics: insight from physical and mathematical modelling", Acta Polytechnica, 48(6).
  26. Wang, C. L., Chuai, X.S., Shi, F., Gao, A.S. and Bao, T.C. (2018), "Experimental investigation of predicting rockburst using Bayesian model", Geomech. Eng., 15(6), 1153-1160. https://doi.org/10.12989/gae.2018.15.6.1153.
  27. Wang, C., Liu, L., Elmo, D., Shi, F., Gao, A., Ni, P. and Zhang, B. (2018), "Improved energy balance theory applied to roadway support design in deep mining", J. Geophys. Eng., 15(4), 1588-1601. https://doi.org/10.1088/1742-2140/aab3a0.
  28. Wang, C., Wu, A., and Lu, H. (2015), "Predicting rockburst tendency based on fuzzy matter-element model", Int. J. Rock Mech. Min. Sci., 75, 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004.
  29. Wang, C.L. (2018), Evolution, Monitoring and Predicting Models of Rockburst, Springer, Singapore.
  30. Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunn. Undergr. Sp. Technol., 16(1), 49-57. https://doi.org/10.1016/S0886-7798(01)00030-X.
  31. Wang, S., Huang, R., Ni, P., Ranjith, P.G., and Zhang, M. (2013), "Fracture behavior of intact rock using acoustic emission: experimental observation and realistic modeling", Geotech. Test. J., 36(6), 903-914. https://doi.org/10.1520/GTJ20120086.
  32. Wang, Y.H., Liu, Y.F. and Ma, H.T. (2012), "Changing regularity of rock damage variable and resistivity under loading condition", Safety Sci., 50(4), 718-722. https://doi.org/10.1016/j.ssci.2011.08.046.
  33. Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission", Ultrasonics, 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.
  34. Watanabe, Y., Takai, S., Arai, Y., Yoshino, N. and Hirasawa, Y. (2001), "Prediction of mechanical properties of healing fractures using acoustic emission", J. Orthopaedic Res., 19(4), 548-553. https://doi.org/10.1016/s0736-0266(00)00042-5.
  35. Wei, M.D., Dai, F., Xu, N.W., Liu, Y., and Zhao, T. (2017), "Fracture prediction of rocks under mode i and mode ii loading using the generalized maximum tangential strain criterion", Eng. Fract. Mech., S0013794417307828. https://doi.org/10.1016/j.engfracmech.2017.09.026.
  36. Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
  37. Zhang, O., Song, J. and Nie, X. (1991), "Application of neural network models to rock mechanics and rock engineering", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(6), 535-540. https://doi.org/10.1016/0148-9062(91)91130-J.
  38. Zhang, Y., and Ni, P. (2018), "Design optimization of room and pillar mines: A case study of the Xianglushan tungsten mine", Quart. J. Eng. Geol. Hydrogeol., 51(3), 352-364. https://doi.org/10.1144/qjegh2017-037.
  39. Zhao, J., Cai, J.G., Zhao, X.B., and Li, H.B. (2008), "Dynamic model of fracture normal behaviour and application to prediction of stress wave attenuation across fractures", Rock Mech. Rock Eng., 41(5), 671-693. https://doi.org/10.1007/s00603-006-0127-2.
  40. Zhu, Y H., Liu, X R., Zhou, J P. (2008), "Rockburst prediction analysis based on v-SVR algorithm", J. China Coal Soc., (03), 277-281. https://doi.org/10.13225/j.cnki.jccs.2008.03.025.

Cited by

  1. Theoretical and Experimental Study of the Effects of Impact Drilling Parameters on the Properties of Surrounding Rock Damage vol.2020, 2020, https://doi.org/10.1155/2020/8865619