References
- Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. https://doi.org/10.12989/gae.2017.13.4.671.
- Atkinson, J.H. and Potts D.M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique, 27(2), 203-215. https://doi.org/10.1680/geot.1977.27.2.203.
- Bauer, S., Liedl, R. and Sauter, M. (2003), "Modeling of karst aquifer genesis: Influence of exchange flow", Water Resour. Res., 39(10). https://doi.org/10.1029/2003WR002218.
- Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258).
- Brown, E.T. and Bray, J.W. (1982), "Rock-lining interaction calculations for pressure shafts and tunnels", Proceedings of the ISRM International Symposium, Aachen, Germany, May.
- Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. http://doi.org/10.12989/gae.2015.8.3.323.
- Fang, Q., Song, H.R. and Zhang, D.L. (2015), "Complex variable analysis for stress distribution of an underwater tunnel in an elastic half plane", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1821-1835. https://doi.org/10.1002/nag.2375.
- Farhadian, H., Hassani, A.N. and Katibeh, H. (2017), "Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran", KSCE J. Civ. Eng., 21(6), 2429-2438. https://doi.org/10.1007/s12205-016-0995-2.
- Fernandez, G. and Alvarez, T.A. (1994), "Seepage-induced effective stresses and water pressures around pressure tunnels", J. Geotech. Eng., 120(1), 108-127 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(108).
- Font-Capo, J., Vazquez-Sune, E., Carrera, J., Marti, D., Carbonell, R. and Perez-Estaun, A. (2011), "Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM)", Eng. Geol., 121(1-2), 46-54. https://doi.org/10.1016/j.enggeo.2011.04.012.
- Gonzalez, C. and Sagaseta, C. (2001). "Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro", Comput. Geotech., 28(6-7), 445-468. https://doi.org/10.1016/S0266-352X(01)00007-6.
- Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, U.S.A.
- Huang, F., Zhang, M., Wang, F., Ling, T.H. and Yang, X.L. (2020), "The failure mechanism of surrounding rock around an existing shield tunnel induced by an adjacent excavation", Comput. Geotech., 117, 103236. https://doi.org/10.1016/j.compgeo.2019.103236.
- Jeffery, G.B. (1921), "Plane stress and plane strain in bipolar co-ordinates", Phil. Trans Royal Soc. London. Series A, r, 221(582-593), 265-293. https://doi.org/10.1098/rsta.1921.0009.
- Kargar, A.R., Rahmannejad, R. and Hajabasi, M.A. (2015), "The stress state around lined non-circular hydraulic tunnels below the water table using complex variable method", Int. J. Rock Mech. Min. Sci., 78, 207-216. https://doi.org/10.1016/j.ijrmms.2015.04.005.
- Kolymbas, D. and Wagner, P. (2007), "Groundwater ingress to tunnels-the exact analytical solution", Tunn. Undergr. Sp. Technol., 22(1), 23-27. https://doi.org/10.1016/j.tust.2006.02.001.
- Kundu, P.K. and Cohen, I.M. (2008), Fluid Mechanics, Elsevier, Burlington, Vermont, U.S.A.
- Lei, S. (1999), "An analytical solution for steady flow into a tunnel", GroundWater, 37(1), 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00953.x.
- Li, C. and Zou, J.F. (2019), "Anisotropic elasto-plastic solutions for cavity expansion problem in saturated soil mass", Soils Found., https://doi.org/10.1016/j.sandf.2019.05.012.
- Li, C., Zou, J.F. and Li, L. (2020), "A novel approach for predicting lateral displacement caused by pile installation", Geomech. Eng., 20(2), 147-154. https://doi.org/10.12989/gae.2020.20.2.147.
- Li, T.Z. and Yang, X.L. (2020), "Stability of plane strain tunnel headings in soils with tensile strength cut-off", Tunn. Undergr. Sp. Technol., 95, 103138. https://doi.org/10.1016/j.tust.2019.103138.
- Loganathan, N. and Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846).
- Massinas, S. and Sakellariou, M.G. (2009), "Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion", Geotechnique, 59(8), 691-701. https://doi.org/10.1680/geot.8.069.
- Mindlin, R.D. (1940), "Stress distribution around a tunnel", Trans. Amer. Soc. Civ. Eng., 195(1), 1117-1140. https://doi.org/10.1061/TACEAT.0005268
- Ming, H., Wang, M.S., Tan, Z.S. and Wang, X.Y. (2010), "Analytical solutions for steady seepage into an underwater circular tunnel", Tunn. Undergr. Sp. Technol., 25(4), 391-396. https://doi.org/10.1016/j.tust.2010.02.002.
- Nur, A. and Byerlee, J.D. (1971), "An exact effective stress law for elastic deformation of rocks with fluids", J. Geophys. Res., 76, 6414-6419. https://doi.org/10.1029/JB076i026p06414.
- Ohtsu, H., Ohnishi, Y., Haruo, T. and Katsumi, K. (1999), "A study on problems associated with finite element excavation analysis by the stress-flow coupled method", Int. J. Numer. Anal. Meth. Geomech., 23, 1473-1492. https://doi.org/10.1002/(SICI)1096-9853(199911)23:133.0.CO;2-5.
- Park, K.H. and Lee, J.G. (2008), "Seepage force in a drained circular tunnel", An analytical approach", Can. Geotech. J., 45(3), 432-436. https://doi.org/10.1139/T07-113.
- Perrochet, P. and Dematteis, A. (2007), "Modeling transient discharge into a tunnel drilled in a heterogeneous formation", Groundwater, 45(6), 786-790. https://doi.org/10.1111/j.1745-6584.2007.00355.x.
- Pinto, F. and Whittle, A.J. (2013), "Ground movements due to shallow tunnels in soft ground. I: analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000948.
- Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119(3), 103366. https://doi.org/10.1016/j.compgeo.2019.103366.
- Schleiss, A. (1986). ''Design of previous pressure tunnels.'' International Water Power and Dam Construction., Church Hill, U.K., 38(5), 21-26.
- Verruijt, A. and Booker, J.R. (1996), "Surface settlements due to deformation of a tunnel in an elastic half plane", Geotechnique, 46(4), 753-756. https://doi.org/10.1680/geot.1998.48.5.709.
- Xu, X.H., Xiang, Z.C., Zou, J.F. and Wang, F. (2020), "An improved approach to evaluate the compaction compensation grouting efficiency in sandy soil", Geomech. Eng., In Press.
- Zhang, L. and Franklin, J.A. (1993), "Prediction of water flow into rock tunnels: an analytical solution assuming a hydraulic conductivity gradient", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1), 37-46. https://doi.org/10.1016/0148-9062(93)90174-C.
- Zou, J.F. and Wei, X.X. (2018), "An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.
- Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.
Cited by
- Limit Analysis of Collapse Mechanisms for Tunnel Roofs Subjected to Pore Water Pressure: A Numerical Approach vol.2021, 2020, https://doi.org/10.1155/2021/3591670