DOI QR코드

DOI QR Code

Analytical solution for steady seepage and groundwater inflow into an underwater tunnel

  • Zou, Jin-feng (Department of Civil Engineering, Central South University, Central South University Railway Campus) ;
  • Wei, An (Department of Civil Engineering, Central South University, Central South University Railway Campus) ;
  • Liang, Li (Department of Civil Engineering, Central South University, Central South University Railway Campus)
  • Received : 2019.07.05
  • Accepted : 2020.01.15
  • Published : 2020.02.10

Abstract

Solutions of the water pressure and groundwater inflow distribution along the tunnel perimeter in a half-infinite aquifer were investigated considering the conditions of the constant head and constant water pressure. It is assumed that the circular tunnel is buried in a fully saturated, homogeneous, isotropic and half-infinite space. Coordinate transformation technique was adopted, the problem of solving the control equations of water pressure in the Cartesian coordinate was transformed to that in the bipolar coordinate system, which can significantly simplify the derivation procedure of the water pressure and inflow distribution. The validation results show the accuracy and advantage of the proposed approach.

Keywords

References

  1. Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. https://doi.org/10.12989/gae.2017.13.4.671.
  2. Atkinson, J.H. and Potts D.M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique, 27(2), 203-215. https://doi.org/10.1680/geot.1977.27.2.203.
  3. Bauer, S., Liedl, R. and Sauter, M. (2003), "Modeling of karst aquifer genesis: Influence of exchange flow", Water Resour. Res., 39(10). https://doi.org/10.1029/2003WR002218.
  4. Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258).
  5. Brown, E.T. and Bray, J.W. (1982), "Rock-lining interaction calculations for pressure shafts and tunnels", Proceedings of the ISRM International Symposium, Aachen, Germany, May.
  6. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. http://doi.org/10.12989/gae.2015.8.3.323.
  7. Fang, Q., Song, H.R. and Zhang, D.L. (2015), "Complex variable analysis for stress distribution of an underwater tunnel in an elastic half plane", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1821-1835. https://doi.org/10.1002/nag.2375.
  8. Farhadian, H., Hassani, A.N. and Katibeh, H. (2017), "Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran", KSCE J. Civ. Eng., 21(6), 2429-2438. https://doi.org/10.1007/s12205-016-0995-2.
  9. Fernandez, G. and Alvarez, T.A. (1994), "Seepage-induced effective stresses and water pressures around pressure tunnels", J. Geotech. Eng., 120(1), 108-127 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(108).
  10. Font-Capo, J., Vazquez-Sune, E., Carrera, J., Marti, D., Carbonell, R. and Perez-Estaun, A. (2011), "Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM)", Eng. Geol., 121(1-2), 46-54. https://doi.org/10.1016/j.enggeo.2011.04.012.
  11. Gonzalez, C. and Sagaseta, C. (2001). "Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro", Comput. Geotech., 28(6-7), 445-468. https://doi.org/10.1016/S0266-352X(01)00007-6.
  12. Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, U.S.A.
  13. Huang, F., Zhang, M., Wang, F., Ling, T.H. and Yang, X.L. (2020), "The failure mechanism of surrounding rock around an existing shield tunnel induced by an adjacent excavation", Comput. Geotech., 117, 103236. https://doi.org/10.1016/j.compgeo.2019.103236.
  14. Jeffery, G.B. (1921), "Plane stress and plane strain in bipolar co-ordinates", Phil. Trans Royal Soc. London. Series A, r, 221(582-593), 265-293. https://doi.org/10.1098/rsta.1921.0009.
  15. Kargar, A.R., Rahmannejad, R. and Hajabasi, M.A. (2015), "The stress state around lined non-circular hydraulic tunnels below the water table using complex variable method", Int. J. Rock Mech. Min. Sci., 78, 207-216. https://doi.org/10.1016/j.ijrmms.2015.04.005.
  16. Kolymbas, D. and Wagner, P. (2007), "Groundwater ingress to tunnels-the exact analytical solution", Tunn. Undergr. Sp. Technol., 22(1), 23-27. https://doi.org/10.1016/j.tust.2006.02.001.
  17. Kundu, P.K. and Cohen, I.M. (2008), Fluid Mechanics, Elsevier, Burlington, Vermont, U.S.A.
  18. Lei, S. (1999), "An analytical solution for steady flow into a tunnel", GroundWater, 37(1), 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00953.x.
  19. Li, C. and Zou, J.F. (2019), "Anisotropic elasto-plastic solutions for cavity expansion problem in saturated soil mass", Soils Found., https://doi.org/10.1016/j.sandf.2019.05.012.
  20. Li, C., Zou, J.F. and Li, L. (2020), "A novel approach for predicting lateral displacement caused by pile installation", Geomech. Eng., 20(2), 147-154. https://doi.org/10.12989/gae.2020.20.2.147.
  21. Li, T.Z. and Yang, X.L. (2020), "Stability of plane strain tunnel headings in soils with tensile strength cut-off", Tunn. Undergr. Sp. Technol., 95, 103138. https://doi.org/10.1016/j.tust.2019.103138.
  22. Loganathan, N. and Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846).
  23. Massinas, S. and Sakellariou, M.G. (2009), "Closed-form solution for plastic zone formation around a circular tunnel in half-space obeying Mohr-Coulomb criterion", Geotechnique, 59(8), 691-701. https://doi.org/10.1680/geot.8.069.
  24. Mindlin, R.D. (1940), "Stress distribution around a tunnel", Trans. Amer. Soc. Civ. Eng., 195(1), 1117-1140. https://doi.org/10.1061/TACEAT.0005268
  25. Ming, H., Wang, M.S., Tan, Z.S. and Wang, X.Y. (2010), "Analytical solutions for steady seepage into an underwater circular tunnel", Tunn. Undergr. Sp. Technol., 25(4), 391-396. https://doi.org/10.1016/j.tust.2010.02.002.
  26. Nur, A. and Byerlee, J.D. (1971), "An exact effective stress law for elastic deformation of rocks with fluids", J. Geophys. Res., 76, 6414-6419. https://doi.org/10.1029/JB076i026p06414.
  27. Ohtsu, H., Ohnishi, Y., Haruo, T. and Katsumi, K. (1999), "A study on problems associated with finite element excavation analysis by the stress-flow coupled method", Int. J. Numer. Anal. Meth. Geomech., 23, 1473-1492. https://doi.org/10.1002/(SICI)1096-9853(199911)23:133.0.CO;2-5.
  28. Park, K.H. and Lee, J.G. (2008), "Seepage force in a drained circular tunnel", An analytical approach", Can. Geotech. J., 45(3), 432-436. https://doi.org/10.1139/T07-113.
  29. Perrochet, P. and Dematteis, A. (2007), "Modeling transient discharge into a tunnel drilled in a heterogeneous formation", Groundwater, 45(6), 786-790. https://doi.org/10.1111/j.1745-6584.2007.00355.x.
  30. Pinto, F. and Whittle, A.J. (2013), "Ground movements due to shallow tunnels in soft ground. I: analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000948.
  31. Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119(3), 103366. https://doi.org/10.1016/j.compgeo.2019.103366.
  32. Schleiss, A. (1986). ''Design of previous pressure tunnels.'' International Water Power and Dam Construction., Church Hill, U.K., 38(5), 21-26.
  33. Verruijt, A. and Booker, J.R. (1996), "Surface settlements due to deformation of a tunnel in an elastic half plane", Geotechnique, 46(4), 753-756. https://doi.org/10.1680/geot.1998.48.5.709.
  34. Xu, X.H., Xiang, Z.C., Zou, J.F. and Wang, F. (2020), "An improved approach to evaluate the compaction compensation grouting efficiency in sandy soil", Geomech. Eng., In Press.
  35. Zhang, L. and Franklin, J.A. (1993), "Prediction of water flow into rock tunnels: an analytical solution assuming a hydraulic conductivity gradient", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1), 37-46. https://doi.org/10.1016/0148-9062(93)90174-C.
  36. Zou, J.F. and Wei, X.X. (2018), "An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.
  37. Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.

Cited by

  1. Limit Analysis of Collapse Mechanisms for Tunnel Roofs Subjected to Pore Water Pressure: A Numerical Approach vol.2021, 2020, https://doi.org/10.1155/2021/3591670