References
- Ahnberg, H., Johanson, S.E., Pihl, H. and Carlsson, T. (2003), "Stabilising effects of different binders in some Swedish soils", Proc. Inst. Civ. Eng. Ground Improv., 7(1), 9-23. https://doi.org/10.1680/grim.2003.7.1.9.
- Akinwumi, I.I., Diwa, D. and Obianigwe, N. (2014), "Effects of crude oil contamination on the index properties, strength and permeability of lateritic clay", Int. J. Appl. Sci. Eng. Res., 3, 816-824.
- Al-Khanbashi, A. and Abdalla, S.W. (2006), "Evaluation of three waterborne polymers as stabilizers for sandy soil", Geotech. Geol. Eng., 24(6), 1603-1625. https://doi.org/10.1007/s10706-005-4895-3.
- Anagnostopoulos, C.A. (2015), "Strength properties of an epoxy resin and cement-stabilized silty clay soil", Appl. Clay Sci., 114, 517-529. https://doi.org/10.1016/j.clay.2015.07.007.
- Anagnostopoulos, C.A., Stavridakis, E.and Grammatikopoulos, I. (2003), "Engineering behaviour of cement acrylic resin treated soft clay", Proceedings of the International Conference on Problematic Soils, Nottingham, U.K., July.
- ASTM (1994), Annual Book of ASTM Standards, American Society for Testing and Materials, ASTM International, West Conshohocken, Philadelphia, U.S.A.
- ASTM (1997), ASTM C 938-97: Standard Practice for Proportioning Grout Mixtures for Preplaced Aggregate Concrete, ASTM International, West Conshohocken, Philadelphia, U.S.A.
- ASTM (2016), ASTM C 938-16: Standard Practice for Proportioning Grout Mixtures for Preplaced-Aggregate Concrete, ASTM International, West Conshohocken, Philadelphia, U.S.A.
- Ayotamuno, J., Kogbara, R.B. and Taleat, M.O. (2006), "Bioremediation of a petroleum-hydrocarbon polluted agricultural soil at different levels of water application in Port Harcourt, Nigeria", J. Food Agr. Environ., 4(3), 214-217.
- Bergado, D.T., Ruenkrairergsa, T., Taesiri, Y. and Balasubramanian, A.S. (1999), "Deep soil mixing used to reduce embankment settlement", Proc. Inst. Civ. Eng. Ground Improv., 3(4), 145-162. https://doi.org/10.1680/gi.1999.030402.
- Burgess, L.C. (2013), Organic Pollutants in Soil, in Soils and Human Health, CRC Press, Boca Raton, Florida, U.S.A., 83-106.
- Ebuehi, O.A.T., Abibo, I.B., Shekwolo, P.D., Sigismund, K.I., Adoki, A. and Okoro, I.C. (2005), "Remediation of crude oil contaminated soil by enhanced natural attenuation technique", J. Appl. Sci. Environ. Manag., 9(1), 103-106.
- Estabragh, A.R., Beytolahpour, I. and Javadi, A.A. (2011), "Effect of resin on the strength of soil-cement mixture", J. Mater. Civ. Eng., 23(7), 969-976. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000252.
- Greenberg, B.M., Huang, X., Gerhardt, K., Glick, B.R., Gurska, J., Wang, W., Lampi, M., Khalid, A., Isherwood, D., Chang, P., Wang, H., Wu, S.S., Yu, X.M., Dixon, D.G. and Gerwing, P. (2007), "Field and laboratory tests of a multi-process phytoremediation system for decontamination of petroleum and salt impacted soils", Proceedings of the 9th International In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland, U.S.A., May.
- Hamidi, S. and Marandi, S.M. (2017), "Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin", Geomech. Eng., 15(2), 729-738. https://doi.org/10.12989/gae.2018.15.2.729.
- Hamidi, S. and Marandi, S.M. (2018), "Clay concrete and effect of clay minerals types on stabilized soft clay soils by epoxy resin", Appl. Clay Sci., 151, 92-101. https://doi.org/10.1016/j.clay.2017.10.010.
- Horpibiulsuk, S., Miura, N., Nagaraj, T.S. and Koga, H. (2002), "Improvement of soft marine clays by deep mixing technique", Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, May.
- Horpibulsk, S., Rachan, R., Suddeepong, A. and Chinkulkijniwat, A. (2011), "Strength development in cement admixed Bangkok clay: laboratory and field investigations", Soils Found., 51(2), 239-251. https://doi.org/10.3208/sandf.51.239.
- Impe, W.F.V. and Flores, R.D.V. (2006), "Deep mixing in underwater conditions: a laboratory and field investigation", Proc. Inst. Civ. Eng. Ground Improv., 10(1), 15-22. https://doi.org/10.1680/grim.2006.10.1.15.
- Kamruzzaman, A.H.M., Chew, S.H. and Lee, F.H. (2000), "Engineering behavior of cement treated Singapore marine clay", Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, November.
- Khamehchiyan, M., Charkhabi, A.H. and Tajik, M. (2007), "Effects of crude oil contamination on geotechnical properties of clayey and sandy soil", Eng. Geol., 89, 220-229. https://doi.org/10.1016/j.enggeo.2006.10.009.
- Khemissa, M. and Mahamedi, A. (2014), "Cement and lime mixture stabilization of an expansive over consolidated clay", Appl. Clay Sci., 95, 104-110. https://doi.org/10.1016/j.clay.2014.03.017.
- Khosravi, E., Ghasemzadeh, H., Sabour, M.R. and Yazdani, H. (2013), "Geotechnical properties of gas oil contaminated kaolinite", Eng. Geol., 166, 11-16. https://doi.org/10.1016/j.enggeo.2013.08.004.
- Kogbara, R.B. and Al-Tabbaa, A. (2011), "Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil", Sci. Total Environ., 409(11), 2325-2335. https://doi.org/10.1016/j.scitotenv.2011.02.037.
- Lorenzo, G.A., Bergado, D.T. and Soralump, S. (2006), "New and economical mixing method of cement-admixed clay for DMM application", Geotech. Test. J., 29(1), 54-63. https://doi.org/10.1520/GTJ12129.
- Meegoda, J.N. and Ratnaweera, P. (1994), "Compressibility of contaminated fine grained soils", Geotech. Test. J., 17(1), 101-112. https://doi.org/10.1520/GTJ10078J.
- Murugesan, S. and Rajagopal, K. (2007), "Model tests on geosynthetics-encased Stone column", Geosynth. Int., 14, 346-354. https://doi.org/10.1680/gein.2007.14.6.346.
- Nazir, A.K. (2011), "Effect of motor oil contamination on geotechnical properties of over consolidated clay", Alexandria Eng. J., 50, 331-335. https://doi.org/10.1016/j.aej.2011.05.002.
- Obeta, I.N. and Eze-uzomaka, O.J. (2013), "Geotechnical properties of waste engine oil contaminated laterites", Nigerian J. Technol., 32, 203-210.
- Ouhadi, V.R. and Yong, R.N. (2003), "Impact of clay microstructure and mass absorption coefficient on the quantitative mineral identification by XRD analysis", Appl. Clay Sci., 23, 141-148. https://doi.org/10.1016/S0169-1317(03)00096-6.
- Pakbaz, M.S. and Alipour, R. (2012), "Influence of cement addition on the geotechnical properties of an Iranian clay", Appl. Clay Sci., 67-68, 1-4. https://doi.org/10.1016/j.clay.2012.07.006.
- Petchgate, K., Jongpradist, P. and Jamsawang, P. (2004), "Field flexural behaviour of soil-cement column", Proceedings of the 5th Symposium 2004 on Soil/Ground Improvement and Geosynthetics, Thonburi, Thailand, December.
- Petchgate, K., Jongpradist, P. and Panmanajareonphol, S. (2003), "Field pile load test of soil-cement column in soft clay", Proceedings of the International Symposium 2003 on Soil/Ground Improvement and Geosynthetics in Waste Containment and Erosion Control Applications, Thailand, December.
- Porbaha, A. (1998), "State of the art in deep mixing technology, part I: basic concepts and overview", Proc. Inst. Civ. Eng. Ground Improv., 2(2), 81-92. https://doi.org/10.1680/gi.1998.020204.
- Porbaha, A. (2002), "State of the art in quality assessment of deep mixing technology", Proc. Inst. Civ. Eng. Ground Improv., 6(3), 95-120. https://doi.org/10.1680/grim.2002.6.3.95.
- Puppala, A.J., Wattanasanticharoen, E. and Punthutaecha, K. (2003), "Experimental evaluations of stabilisation methods for sulphate-rich expansive soils", Proc. Inst. Civ. Eng. Ground Improv., 7(1), 25-35. https://doi.org/10.1680/grim.2003.7.1.25.
- Rubright, R. and Bandimere, S. (2004), Ground Improvement, Spon Press, London, U.K., 440.
- Saride, S., Puppala, A.J. and Chikyala, S.R. (2013), "Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays", Appl. Clay Sci., 85, 39-45. https://doi.org/10.1016/j.clay.2013.09.008.
- Sukpunya, A., Jotisankasa, A. (2016), "Large simple shear testing of soft Bangkok clay stabilized with soil-cement-columns and its application", Soils Found., 56(4), 640-651. https://doi.org/10.1016/j.sandf.2016.07.005.
- Sukontasukkul, P. and Jamsawang, P. (2012), "Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column", Constr. Build. Mater., 29, 201-205. https://doi.org/10.1016/j.conbuildmat.2011.10.040.
- Tabbaa, A.A. (2003), "Soil mixing in the UK 1991-2001: State of practice report", Proc. Inst. Civ. Eng. Ground Improv., 7(3), 117-126. https://doi.org/10.1680/grim.2003.7.3.117.
- Vichan, S. and Rachan, R. (2013), "Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash", Soils Found., 53(2), 272-281. https://doi.org/10.1016/j.sandf.2013.02.007
- Voottipruex, P. and Jamsawang, P. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437
- Wu, M., Zhao, X. and Dou, Y.M. (2005), "Application of stiffened deep cement mixed column in ground improvement", Proceedings of the International Conference on Deep Mixing Best Practices and Recent Advances. Stockholm, Sweden, May.
- Yang, Y., Wang, G., Xie, S., Tu, X. and Huang, X. (2013), "Effect of mechanical property of cemented soil under the different pH value", Appl. Clay Sci., 79, 19-24. https://doi.org/10.1016/j.clay.2013.02.014.
- Yi, Y., Gu, L. and Liu, S. (2015), "Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blast furnace", Appl. Clay Sci., 103, 71-76. https://doi.org/10.1016/j.clay.2014.11.005.
- Yi, Y., Gu, L., Liu, S. and Jin, F. (2016), "Magnesia reactivity on activating efficacy for ground granulated blast furnace slag for soft clay stabilization", Appl. Clay Sci., 126, 57-62. https://doi.org/10.1016/j.clay.2016.02.033.
Cited by
- Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine vol.25, pp.2, 2020, https://doi.org/10.12989/gae.2021.25.2.143
- Removal behaviors of Cu and Pb from heavy metal contaminated silts flushed by citric acid vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.489