참고문헌
- Ahmadi, M.A. and Shadizadeh, S.R. (2012), "New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept", Fuel, 102, 716-723. https://doi.org/10.1016/j.fuel.2012.05.050.
- Arabnejad Khanouki, M., Ramli Sulong, N. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
- Arabnejad Khanouki, M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
- Arabnejad Khanouki, M., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Construct. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.
- Armaghani, D.J., Koopialipoor, M., Marto, A. and Yagiz, S. (2019), "Application of several optimization techniques for estimating TBM advance rate in granitic rocks", J. Rock Mech. Geotech. Eng., 11(4), 779-789. https://doi.org/10.1016/j.jrmge.2019.01.002.
- Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N. and Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunn. Undergr. Sp. Technol., 63, 29-43. https://doi.org/10.1016/j.tust.2016.12.009.
- Babu, G.L., Vasudevan, A.K. and Haldar, S. (2008), "Numerical simulation of fiber-reinforced sand behavior", Geotext. Geomembr., 26(2), 181-188. https://doi.org/10.1016/j.geotexmem.2007.06.004.
- Basma, A.A., Barakat, S.A. and Omar, M. (2003), "Modeling time dependent swell of clays using sequential artificial neural networks", Environ. Eng. Geosci., 9, 279-288. https://doi.org/10.2113/9.3.279.
- Ch, S. and Mathur, S. (2012), "Particle swarm optimization trained neural network for aquifer parameter estimation", KSCE J. Civ. Eng., 16, 298-307. https://doi.org/10.1007/s12205-012-1452-5.
- Consoli, N., Casagrande, M. and Coop, M. (2005), "Behavior of a fiber-reinforced sand under large shear strains", Proceedings of 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, September.
- Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/IJPS11.1585.
- Das, S.K. and Basudhar, P.K. (2008), "Prediction of residual friction angle of clays using artificial neural network", Eng. Geol., 100(3-4), 142-145. https://doi.org/10.1016/j.enggeo.2008.03.001.
- Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. http://doi.org/10.12989/scs.2019.30.2.141.
- Donaghe, R.T., Chaney, R.C. and Silver, M.L. (1988), Advanced Triaxial Testing of Soil and Rock. American Society for Testing and Materials, 896.
-
Fenton, G.A. (2003), "Bearing capacity prediction of spatially random c
$\varphi$ soils", Can. Geotech. J., 40(1), 54-65. https://doi.org/10.1139/t02-086. - Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L. (1996), "The relationship of the unsaturated soil shear strength to the soil-water characteristic curve", Can. Geotech. J., 33(3), 440-448. https://doi.org/10.1139/t96-065.
- Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 23(5), 500-510. https://doi.org/10.1139/t88-055.
- Goktepe, A.B. and Sezer, A. (2010), "Effect of particle shape on density and permeability of sands", Proc. Inst. Civ. Eng. Geotech. Eng., 163(6), 307-320. https://doi.org/10.1680/geng.2010.163.6.307.
- Gordan, B., Jahed Armaghani, D., Hajihassani, M. and Monjezi, M. (2016), "Prediction of seismic slope stability through combination of particle swarm optimization and neural network", Eng. Comput., 32(1), 85-97. https://doi.org/10.1007/s00366-015-0400-7.
- Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric-versus fiber-reinforced sand", J. Geotech. Eng., 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804).
- Gray, D.H. and Ohashi, H. (1983), "Mechanics of fiber reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. https://doi.org/10.1215/00294527-2010-028.
- Gray, M.A. (1990), "Static response of sand reinforced with randomly distributed fibers", J. Geotech. Eng., 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
- Guo, P. (2008), "Modified direct shear test for anisotropic strength of sand", J. Geotech. Geoenviron. Eng., 134(9), 1311-1318. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1311).
- Hajihassani, M., Jahed Armaghani, D. and Kalatehjari, R. (2017), "Applications of particle swarm optimization in geotechnical engineering: A comprehensive review", Geotech. Geol. Eng., 36(2), 705-722. https://doi.org10.1007/s10706-017-0356-z.
- Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.
- Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
- Kaya, A. and Kwong, J.K.P. (2007), "Evaluation of common practice empirical procedures for residual friction angle of soils: Hawaiian amorphous material rich colluvial soil case study", Eng. Geol., 92(1-2), 49-58. https://doi.org/10.1016/j.enggeo.2007.03.002.
- Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. and Ozvan, A. (2009), "Modeling of the angle of shearing resistance of soils using soft computing systems", Expert Syst. Appl., 36(9), 11814-11826. https://doi.org/10.1016/j.eswa.2009.04.008.
- Kennedy, J. and Eberhart, R.C. (1995), "A discrete binary version of the particle swarm algorithm", Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, Florida, U.S.A., October.
- Khalilmoghadam, B., Afyuni, M., Abbaspour, K.C., Jalalian, A., Dehghani, A.A. and Schulin, R. (2009), "Estimation of surface shear strength in Zagros region of Iran-A comparison of artificial neural networks and multiple-linear regression models", Geoderma, 153(1-2), 29-36. https://doi.org/10.1016/j.geoderma.2009.07.008.
- Khandelwal, M. and Armaghani, D.J. (2016), "Prediction of drillability of rocks with strength properties using a hybrid GAANN technique", Geotech. Geol. Eng., 34, 605-620 https://doi.org/10.1007/s10706-015-9970-9.
- Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
- Koopialipoor, M., Jahed Armaghani, D., Hedayat, A., Marto, A. and Gordan, B. (2018), "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", Soft Comput., 23(14), 5913-5929. https://doi.org/10.1007/s00500-018-3253-3.
- Ladd, R. (1978), "Preparing test specimens using undercompaction", Geotech. Test. J., 1, 16-23. https://doi.org/10.1520/GTJ10364J.
- Liou, S.W., Wang, C.M. and Huang, Y.F. (2009), "Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN", J. UCS, 15(4), 742-764.
-
Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "A novel alpha finite element method (
${\alpha}FEM$ ) for exact solution to mechanics problems using triangular and tetrahedral elements", Comput. Meth. Appl. Mech. Eng., 197(45-48), 3883-3897. https://doi.org/10.1016/j.cma.2008.03.011. - Mahdiyar, A., Armaghani, D.J., Marto, A., Nilashi, M. and Ismail, S. (2018), "Rock tensile strength prediction using empirical and soft computing approaches", Bull. Eng. Geol. Environ., 78(6), 4519-4531. https://doi.org/10.1007/s10064-10018-11405-10064.
- Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-019-01493-w.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys., 5, 115-133. https://doi.org/10.1007/BF02478259.
- Michalowski, R.L. (2004), "Limit loads on reinforced foundation soils", J. Geotech. Geoenviron. Eng., 130, 381. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(381).
- Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A Stat. Mech. Appl., 53, 121169. https://doi.org/10.1016/j.physa.2019.121169.
- Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Majid, M.Z.A. (2017), "An optimized ANN model based on genetic algorithm for predicting ripping production", Neural Comput. Appl., 28, 393-406. https://doi.org/10.1007/s00521-016-2359-8.
- Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014a), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. http://dx.doi.org/10.12989/sem.2013.46.6.853.
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014b), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785.
- Mohandes, M.A. (2012), "Modeling global solar radiation using Particle Swarm Optimization (PSO)", Solar Energy, 86, 3137-3145. https://doi.org/10.1016/j.sciaf.2019.e00094.
- Momeni, E., Nazir, R., Jahed Armaghani, D. and Maizir, H. (2014), "Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN", Measurement, 57, 122-131. https://doi.org/10.1016/j.measurement.2014.08.007.
- Najjar, Y.M. and Basheer, I.A. (1996), "Discussion: Stress-strain modeling of sands using artificial neural networks", J. Geotech. Eng., 122(11), 949-951. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(949).
- Nelson, M.M. and Illingworth, W. T. (1991), A Practical Guide to Neural Nets.
- Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T. and Nguyen-Xuan, H. (2010), "A node-based smoothed finite element method (NSFEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes", Comput. Meth. Appl. Mech. Eng., 199(45-48), 3005-3027. https://doi.org/10.1016/j.cma.2010.06.017.
- Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M.D., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4): 425-432. https://doi.org/10.12989/sss.2018.22.4.425.
- Park, S.S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Construct. Build. Mater., 25(2), 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
- Penumadu, D. and Zhao, R. (1999), "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)", Comput. Geotech., 24(3), 207-230. https://doi.org/10.1016/S0266-352X(99)00002-6.
- Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M. and Tien Bui, D. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
- Priddy, K.L. and Keller, P.E. (2005), Artificial Neural Networks: An Introduction, SPE Press.
- Radoslaw, L. and Michalowski, J.C. (2002), "Strength anisotropy of fiber-reinforced sand", Comput. Geotech., 29(4), 279-299. https://doi.org/10.1016/S0266-352X(01)00032-5.
- Ranjan, G., Vasan, R.M. and Charan, H. D. (1997), "Probabilistic analysis of randomly distributed fiber-reinforced soil", J. Geotech. Eng., 123, 986-988. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419).
- Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E. T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. https://doi.org/10.1364/AO.54.000037.
- Saemi, M., Ahmadi, M. and Varjani, A. (2007), "Design of neural networks using genetic algorithm for the permeability estimation of the reservoir", J. Petrol. Sci. Eng., 59, 97-105. https://doi.org/10.1016/j.petrol.2007.03.007.
- Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariat, M. (2020a), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
- Safa, M., Sari, P. A., Shariat, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020b), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A Stat. Mech. Appl. https://doi.org/10.1016/j.physa.2019.124046.
- Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. http://doi.org/10.12989/scs.2016.21.3.679.
- Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. http://doi.org/10.12989/sss.2018.22.3.335.
- Shao, Z. and Vesel, A. (2015), "Modeling the packing coloring problem of graphs", Appl. Math. Modell., 39(13), 3588-3595. https://doi.org/10.1016/j.apm.2014.11.060.
- Shao, Z., Armaghani, D.J., Bejarbaneh, B.Y., Mu'azu, M. and Mohamad, E.T. (2019a), "Estimating the friction angle of black shale core specimens with hybrid-ANN approaches", Measurement. https://doi.org/10.1016/j.measurement.2019.06.007.
- Shao, Z., Gholamalizadeh, E., Boghosian, A., Askarian, B. and Liu, Z. (2019b), "The chiller's electricity consumption simulation by considering the demand response program in power system", Appl. Therm. Eng., 149, 1114-1124. https://doi.org/10.1016/j.applthermaleng.2018.12.121.
- Shao, Z., Wakil, K., Usak, M., Amin Heidari, M., Wang, B. and Simoes, R. (2018), "Kriging empirical mode decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid", Appl. Therm. Eng., 145, 58-70. https://doi.org/10.1016/j.applthermaleng.2018.09.028.
- Shariat, M., Mahmoudi Azar, S., Arjomand, M.A., Salmani Tehrani, H., Daei, M. and Safa, M. (2019), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. https://doi.org/10.12989/gae.2019.19.6.473.
- Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
- Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604.
- Shariati, A., Shariati, M., Sulong, N.R., Suhatril, M., Khanouki, M.A. and Mahoutian, M. (2014), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Construct. Build. Mater., 52, 276-283. https://doi.org/10.1016/j.conbuildmat.2013.11.036.
- Shariati, A., Sulong, N.R., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831.DOI: https://doi.org/10.5897/IJPS11.1604
- Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Turng, N.T. and Salih, M. N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
- Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553
- Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N. A., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019b), "Application of a hybrid artificial neural networkparticle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
- Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019c), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
- Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
- Shariati, M., Rafiei, S., Mehrabi, P., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019d), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Construct., 8(3), 225. https://doi.org/10.12989/acc.2019.8.3.225
- Shariati, M., Tahir, M.M., Wee, T.C., Shah, S.N.R., Jalali, A., Abdullahi, M.A.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.
- Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019e), "Estimation of moment and rotation of steel rack connections using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
- Shi, X., Hassanzadeh-Aghdam, M. and Ansari, R. (2019a), "Viscoelastic analysis of silica nanoparticle-polymer nanocomposites", Compos. Part B Eng., 158, 169-178. https://doi.org/10.1016/j.compositesb.2018.09.084.
- Shi, X., Jaryani, P., Amiri, A., Rahimi, A. and Malekshah, E.H. (2019b), "Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect", Powder Technol., 346, 160-170. https://doi.org/10.1016/j.powtec.2018.12.071.
- Simpson, P.K. (1990), "Artificial neural systems: foundations, paradigms, applications, and implementations", Int. J. Neural Syst., 1(03), 285-289. https://doi.org/10.1142/S0129065790000187.
- Suhatril, M., Osman, N., Sari, P.A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.
- Tiryaki, B. (2008), "Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees", Eng. Geol., 99, 51-60. https://doi.org/10.1016/j.enggeo.2008.02.003.
- Tiwari, B., Ajmera, B., Moubayed, S., Lemmon, A. and Styler, K. (2012), "Soil modification with shredded rubber tires", Proceedings of the GeoCongress2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, U.S.A., March.
- Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://doi.org/10.12989/scs.2014.17.5.623.
- Toghroli, A., Shariati, M., Karim, M.R.B. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017, Zurich, Switzerland.
- Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Tonnizam Mohamad, E. and Khorami, M. (2018a), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.
- Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2018b), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manufact., 29, 1793-1801. https://doi.org/10.1007/s10845-016-1217-y.
- Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019b), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
- Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019a), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.
- Vidal, H. and Earth, F.B. (1969), "The principle of reinforced Earth", Highway Research Record 282, Highway Research Board.
- Waldron, L.J. (1977), "The shear resistance of root-permeated homogeneous and stratified soil", Soil Sci. Soc. Am. J., 41(5), 843-849. https://doi.org/10.2136/sssaj1977.03615995004100050005x.
- Wang, X., Tang, Z., Tamura, H., Ishii, M. and Sun, W. D. (2004), "An improved backpropagation algorithm to avoid the local minima problem", Neurocomputing, 56, 455-460. https://doi.org/10.1016/j.neucom.2003.08.006.
- Wang, Y., Guo, P., Dai, F., Li, X., Zhao, Y. and Liu, Y. (2018), "Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique", Int. J. Geomech., 18(12), 04018172. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001313.
- Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M., Tahir, M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., 27(3), 389-399. http://doi.org/10.12989/scs.2018.27.3.389,
- Wesley, L.D. (2004), "Residual strength of clays and correlation using Atterberg limits", Geotechnique, 54, 503-504. https://doi.org/10.1680/geot.2003.53.7.669.
- Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Hoang, N. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
- Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. https://doi.org/10.12989/scs.2018.29.1.067.
- Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96, 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.
- Zornberg, J.G. (2002), "Discrete framework for limit equilibrium analysis of fibre-reinforced soil", Geotechnique, 52(8), 593-604. https://doi.org/10.1680/geot.2002.52.8.593.
피인용 문헌
- Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2020, https://doi.org/10.12989/scs.2020.35.2.187
- Project planning and risk management as a success factor for IT projects in agricultural schools in Serbia vol.63, 2020, https://doi.org/10.1016/j.techsoc.2020.101371
- Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2020, https://doi.org/10.12989/acc.2020.10.5.393
- Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.781
- Knowledge-Based Prediction of Load-Carrying Capacity of RC Flat Slab through Neural Network and FEM vol.2021, 2020, https://doi.org/10.1155/2021/4528945
- Hybridization of Parametric and Non-parametric Techniques to Predict Air Over-pressure Induced by Quarry Blasting vol.30, pp.1, 2020, https://doi.org/10.1007/s11053-020-09714-3
- Intelligently Predict the Rock Joint Shear Strength Using the Support Vector Regression and Firefly Algorithm vol.2021, pp.spec, 2020, https://doi.org/10.2113/2021/2467126
- Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review vol.38, pp.7, 2020, https://doi.org/10.1108/ec-10-2020-0576
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2020, https://doi.org/10.12989/gae.2021.26.3.235
- A Novel Combination of Gradient Boosted Tree and Optimized ANN Models for Forecasting Ground Vibration Due to Quarry Blasting vol.30, pp.6, 2020, https://doi.org/10.1007/s11053-021-09899-1