DOI QR코드

DOI QR Code

PRaFULL: A method for the analysis of piled raft foundation under lateral load

  • Stacul, Stefano (Department of Civil and Industrial Engineering, University of Pisa) ;
  • Squeglia, Nunziante (Department of Civil and Industrial Engineering, University of Pisa) ;
  • Russo, Gianpiero (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II)
  • Received : 2019.09.27
  • Accepted : 2020.02.12
  • Published : 2020.03.10

Abstract

A new code, called PRaFULL (Piled Raft Foundation Under Lateral Load), was developed for the analysis of laterally loaded Combined Pile Raft Foundation (CPRF). The proposed code considers the contribution offered by the raft-soil contact and the interactions between all the CPRF system components. The nonlinear behaviour of the reinforced concrete pile and the soil are accounted. As shallower soil layers are of great relevance in the lateral response of a pile foundation, PRaFULL includes the possibility to consider layered soil profiles with appropriate properties. The shadowing effect on the ultimate soil pressure is accounted, when dealing with pile groups, as proposed by the Strain Wedge Model. PRaFULL BEM code obviously requires less computational resources compared to FEM (Finite Element Method) or FDM (Finite Difference Method) codes. The proposed code was validated in the linear elastic range by comparisons with the code APRAF (Analysis of Piled Raft Foundations). The reliability of the procedure to predict piled raft performance was then verified in nonlinear range by comparisons with both centrifuge tests and computer code PRAB.

Keywords

References

  1. API (2007), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - Working Stress Design. vol. 24-WSD, American Petroleum Institute, U.S.A.
  2. Ashour, M., Pilling, P. and Norris, G. (2004), "Lateral behavior of pile groups in layered soils", J. Geotech. Geoenviron. Eng., 130(6), 580-592. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(580).
  3. Aubertin, M., Mbonimpa, M., Bussiere, B. and Chapuis, R.P. (2003), "A model to predict the water retention curve from basic geotechnical properties", Can. Geotech. J., 40(6), 1104-1122. https://doi.org/10.1139/t03-054.
  4. Basile, F. (2015), "Non-linear analysis of vertically loaded piled rafts", Comput. Geotech., 63, 73-82. https://doi.org/10.1016/J.COMPGEO.2014.08.011.
  5. Brown, D.A., Morrison, C. and Reese, L.C. (1988), "Lateral load behavior of pile group in sand", J. Geotech. Eng., 114, 1261-1276. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1261).
  6. Caputo, V. and Viggiani, C. (1984), "Pile foundation analysis: A simple approach to nonlinearity effects", Rivista Italiana Di Geotecnica, 18(1), 32-51.
  7. Comodromos, E.M., Papadopoulou, M.C. and Laloui, L. (2016), "Contribution to the design methodologies of piled raft foundations under combined loadings", Can. Geotech. J., 53(4), 559-577. https://doi.org/10.1139/cgj-2015-0251.
  8. De Sanctis, L. and Russo, G. (2008), "Analysis and performance of piled rafts designed using innovative criteria", J. Geotech. Geoenviron. Eng., 134, 1118-1128. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1118).
  9. De Sanctis, L., Russo, G. and Viggiani, C. (2002), "Piled rafts on layered soils", Proceedings of the DFI Symposium on Pile Foundations, Nice, France.
  10. Douglas, D.J. and Davis, E.H. (1964), "The movement of buried footings due to moment and horizontal load and the movement of anchor plates", Geotechnique, 14(2), 115-132. https://doi.org/10.1680/geot.1964.14.2.115
  11. Eurocode (2004), EC7-1, Eurocode 7 - Geotechnical design - Part 1: General rules, European Committee for Standardization, Brussels, Belgium.
  12. Fahey, M. and Carter, J. (1993), "A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model", Can. Geotech. J., 30, 348-362. https://doi.org/10.1139/t93-029.
  13. Ghiasi, V. and Moradi, M. (2018), "Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations", Geomech. Eng., 16(2), 187-194. https://doi.org/10.12989/gae.2018.16.2.187.
  14. Hamada, J., Tsuchiya, T., Tanikawa, T. and Yamashita, K. (2015), "Lateral loading tests on piled rafts and simplified method to evaluate sectional forces of piles", Geotech. Eng. J. SEAGS AGSSEA, 46, 29-42.
  15. Hirai, H.A. (2012), "Winkler model approach for vertically and laterally loaded piles in nonhomogeneous soil", Int. J. Numer. Anal. Meth. Geomech., 36, 1869-1897. https://doi.org/10.1002/nag.1078.
  16. Horikoshi, K., Matsumoto, T., Hashizume, Y., Watanabe, T. and Fukuyama, H. (2003), "Performance of piled raft foundations subjected to static horizontal loads", Int. J. Phys. Modell. Geotech., 3(2), 37-50. https://doi.org/10.1680/ijpmg.2003.030204.
  17. Huang, A.B., Hsueh, C.K., O'Neill, M.W., Chern, S. and Chen, C. (2001), "Effects of construction on laterally loaded pile groups", J. Geotech. Geoenviron. Eng., 127(5), 385-397. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(385).
  18. Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041.
  19. Jeong, S. and Cho, J. (2014), "Proposed nonlinear 3-D analytical method for piled raft foundations", Comput. Geotech., 59, 112-126. https://doi.org/10.1016/j.compgeo.2014.02.009.
  20. Katzenbach, R. and Choudhury, D. (2013), "ISSMGE Combined Pile-Raft Foundation (CPRF) Guideline", Technische Universitat Darmstadt, Germany.
  21. Kitiyodom, P. and Matsumoto, T. (2002), "A simplified analysis method for piled raft and pile group foundations with batter piles", Int. J. Numer. Anal. Meth. Geomech., 26(13), 1349-1369. https://doi.org/10.1002/nag.248.
  22. Kitiyodom, P., Matsumoto, T., Horikoshi, K. and Watanabe, T. (2005), "Analyses of vertical and horizontal load tests on piled raft models in dry sand", Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, September.
  23. Ko, J., Cho, J. and Jeong, S.S. (2018), "Analysis of load sharing characteristics for a piled raft foundation", Geomech. Eng., 16(4), 449-461. https://doi.org/10.12989/gae.2018.16.4.449.
  24. Landi, G. (2006), "Pali soggetti a carichi orizzontali: indagini sperimentali ed analisi", Ph.D. Dissertation, University of Naples Federico II, Naples, Italy (in Italian).
  25. Mandolini, A. and Viggiani, C. (1997), "Settlement of piled foundations", Geotechnique, 47(4), 791-816. https://doi.org/10.1680/geot.1997.47.4.791.
  26. Mandolini, A., Di Laora, R. and Mascarucci, Y. (2013), "Rational design of piled raft", Proc. Eng., 57, 45-52. https://doi.org/10.1016/j.proeng.2013.04.008.
  27. Mandolini, A., Russo, G. and Viggiani, C. (2005), "Pile foundations: Experimental investigations, analysis and design", Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, September.
  28. Mardfekri, M., Gardoni, P. and Roesset, J.M. (2013), "Modeling laterally loaded single piles accounting for nonlinear soil-pile interactions", J. Eng., 1-7. https://doi.org/10.1155/2013/243179.
  29. Matlock, H. (1970), Correlations for Design of Laterally Loaded Piles in Soft Clay, in Offshore Technology in Civil Engineering: Hall of Fame Papers from the Early Years, ASCE, 77-94.
  30. Matsumoto, T., Fukumura, K., Pastsakorn, K., Horikoshi, K. and Oki, A. (2004), "Experimental and analytical study on behaviour of model piled rafts in sand subjected to horizontal and moment loading", Int. J. Phys. Modell. Geotech., 4(3), 1-19. https://doi.org/10.1680/ijpmg.2004.040301.
  31. Matsumoto, T., Nemoto, H., Mikami, H., Yaegashi, K., Arai, T. and Kitiyodom, P. (2010), "Load tests of piled raft models with different pile head connection conditions and their analyses", Soils Found., 50(1), 63-81. https://doi.org/10.3208/sandf.50.63.
  32. Mayne, P.W. and Poulos, H.G. (1999), "Approximate displacement influence factors for elastic shallow foundations", J. Geotech. Geoenviron. Eng., 125(6), 453-460. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(453).
  33. McVay, M., Zhang, L., Molnit, T. and Lai, P. (1998), "Centrifuge testing of large laterally loaded pile groups in sands", J. Geotech. Geoenviron. Eng., 124(10), 1016-1026. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(1016).
  34. Mindlin, R.D. (1936), "Force at a point in the interior of a semiinfinite solid", Physics, 7, 195-202. https://doi.org/10.1063/1.1745385.
  35. Mokwa, R.L. and Duncan, J.M. (2001), "Experimental evaluation of lateral-load resistance of pile caps", J. Geotech. Geoenviron. Eng., 127(2), 185-192. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(185).
  36. Morelli, F., Amico, C., Salvatore, W., Squeglia, N. and Stacul, S. (2017), "Influence of tension stiffening on the flexural stiffness of reinforced concrete circular sections", Materials, 10(6), 669. https://doi.org/10.3390/ma10060669.
  37. Nakanishi, K. and Takewaki, I. (2013). "Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm", Geomech. Eng., 5(6), 519-540. https://doi.org/10.12989/gae.2013.5.6.519.
  38. O'Neill, M.W. and Dunnavant, T.W. (1984), "A study of effect of scale, velocity, and cyclic degradability on laterally loaded single piles in overconsolidated clay", University of Houston, Houston, Texas, U.S.A.
  39. Plaxis BV (2015), User Manual, Plaxis 3D Anniversary Edition 2015.
  40. Poulos, H.G. (1999). "Approximate computer analysis of pile groups subjected to loads and ground movements", Int. J. Numer. Anal. Meth. Geomech., 23(10), 1021-1041. https://doi.org/10.1002/(SICI)1096-9853(19990825)23:10%3C1021::AID-NAG38%3E3.0.CO;2-N.
  41. Poulos, H.G. (1990), User's Guide to Program DEFPIG 3/4 Deformation Analysis of Pile Groups, Revision 6, School of Civil Engineering, University of Sydney, Sydney, Australia.
  42. Poulos, H.G. (2000), Practical Design Procedures for Piled Raft Foundations, in Design Applications of Raft Foundations, Thomas Telford, 425-467.
  43. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons.
  44. Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (1992), Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press.
  45. Randolph, M.F. (1994), "Design methods for piled groups and piled rafts", Proceedings of the 13th International Conference of Soil Mechanics and Foundations, New Delhi, India, January.
  46. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the 6th Annual Offshore Technology Conference, Houston, Texas, U.S.A., May.
  47. Reese, L.C., Cox, W.R. and Koop, F.D. (1975), "Field testing and analysis of laterally loaded piles in stiff clay", Proceedings of the Offshore Technology Conference, Houston, Texas, U.S.A., May.
  48. Rollins, K.M., Gerber, T.M., Lane, J.D. and Ashford, S.A. (2005), "Lateral resistance of a full-scale pile group in liquefied sand", J, Geotech. Geoenviron. Eng., 131(1), 115-125. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(115).
  49. Russo, G. (1998), "Numerical analysis of piled rafts", Int. J. Numer. Anal. Meth. Geomech., 22(6), 477-493. https://doi.org/10.1002/(SICI)1096-9853(199806)22:6%3C477::AID-NAG931%3E3.0.CO;2-H.
  50. Russo, G. (2016), "A method to compute the non-linear behaviour of piles under horizontal loading", Soils Found., 56(1), 33-43. https://doi.org/10.1016/j.sandf.2016.01.003.
  51. Russo, G. (2018), "Analysis and design of pile foundations under vertical load: An overview", Italian Geotech. J., 52(2), 52-71.
  52. Russo, G. and Viggiani, C. (2009), "Piles under horizontal load: an overview", Proceedings of the 2nd British Geotechnical Association International Conference on Foundations, Dundee, U.K., June.
  53. Russo, G., Abagnara, V., Poulos, H.G. and Small, J.C. (2013), "Re-assessment of foundation settlements for the Burj Khalifa, Dubai", Acta Geotech., 8(1), 3-15. https://doi.org/10.1007/s11440-012-0193-4.
  54. Sawada, K. and Takemura, J. (2014), "Centrifuge model tests on piled raft foundation in sand subjected to lateral and moment loads", Soils Found., 54(2), 126-140. https://doi.org/10.1016/j.sandf.2014.02.005.
  55. Sharafkhah, M. and Shooshpasha, I. (2018), "Physical modeling of behaviors of cast-in-place concrete piled raft compared to freestanding pile group in sand", J. Rock Mech. Geotech. Eng., 10(4), 703-716. https://doi.org/10.1016/j.jrmge.2017.12.007.
  56. Small, J.C. and Booker, J.R. (1986), "Finite layer analysis of layered elastic materials using a flexibility approach. Part 2-Circular and rectangular loadings", Int. J. Numer. Meth. Eng., 23(5), 959-978. https://doi.org/10.1002/nme.1620230515.
  57. Small, J.C. and Zhang, H.H. (2000), "Piled raft foundations subjected to general loadings", Dev. Theor. Geomech., 431-444.
  58. Small, J.C. and Zhang, H.H. (2002), "Behavior of piled raft foundations under lateral and vertical loading", Int. J. Geomech., 2(1), 29-45. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:1(29).
  59. Small, J.C., Zhang, H.H. and de Ambrosis, A.L. (2006), "Analysis of piled raft foundation", Department of Civil Engineering, University of New South Wales Sydney, Sydney, Australia.
  60. Stacul, S. (2018), "Analysis of piles and piled raft foundation under horizontal load", Ph.D. Dissertation, University of Florence, Florence, Italy, Technical University of Braunschweig, Braunschweig, Germany.
  61. Stacul, S. and Squeglia, N. (2018), "Analysis method for laterally loaded pile groups using an advanced modeling of reinforced concrete sections", Materials, 11(2), 300. https://doi.org/10.3390/ma11020300.
  62. Stacul, S., Squeglia, N. and Morelli, F. (2017), "Laterally loaded single pile response considering the influence of suction and non-linear behaviour of reinforced concrete sections", Appl. Sci., 7(12), 1310. https://doi.org/10.3390/app7121310.
  63. Unsever, Y., Ozkan, M., Matsumoto, T., Shimono, S. and Esashi, K. (2014), "Physical and numerical modelling of pile foundations subjected to vertical and horizontal loading in dry sand", Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, 2014 (IACMAG 2014), Kyoto, Japan, September.
  64. Unsever, Y.S., Matsumoto, T. and Ozkan, M.Y. (2015), "Numerical analyses of load tests on model foundations in dry sand", Comput. Geotech., 63, 255-266. https://doi.org/10.1016/j.compgeo.2014.10.005.
  65. Viggiani, C., Mandolini, A. and Russo, G. (2012), Piles and Pile Foundations, Spoon Press.
  66. Vu, A.T., Matsumoto, T., Kobayashi, S.I. and Nguyen, T.L. (2016), "Model load tests on battered pile foundations and finiteelement analysis", Int. J. Phys. Modell. Geotech., 18(1), 33-54. https://doi.org/10.1680/jphmg.16.00010.
  67. Vu, A.T., Matsumoto, T., Kobayashi, S.I. and Shimono, S. (2017), "Experimental study on pile foundations having batter piles subjected to combination of vertical and horizontal loading at 1-g field", Geotech. Eng. J. SEAGS AGSSEA, 48(3), 12-24.
  68. Welch, R.C. and Reese, L.C. (1972), "Lateral load behavior of drilled shafts", Research Report No. 89-10, University of Texas at Austin, Austin, Texas, U.S.A.
  69. Wu, G., Liam Finn, W.D. and Dowling, J. (2015), "Quasi-3D analysis: validation by full 3D analysis and field tests on single piles and pile groups", Soil Dyn. Earthq. Eng., 78, 61-70. https://doi.org/10.1016/j.soildyn.2015.07.006.
  70. Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", Int. J. Numer. Anal. Meth. Geomech., 26(14), 1385-1406. https://doi.org/10.1002/nag.250.
  71. Yang, Z. and Jeremic, B. (2003), "Numerical study of group effects for pile groups in sands", Int. J. Numer. Anal. Meth. Geomech., 27(15), 1255-1276. https://doi.org/10.1002/nag.321.
  72. Zhang, H.H. and Small, J.C. (2000), "Analysis of capped pile groups subjected to horizontal and vertical loads", Comput. Geotech., 26, 1-21. https://doi.org/10.1016/S0266-352X(99)00029-4.