Acknowledgement
Supported by : National Natural Science Foundation of China, National Natural Science Foundation of Liaoning
This study was financially supported by National Key Laboratory Funding of Independent Research Project [grant number S18406]; National Natural Science Foundation of China [grant number 51479023, grant number 51909241], and National Natural Science Foundation of Liaoning [grant number 2019-ZD-0187].
References
- An, N., Hemmati, S., Cui, Y.J. and Tang, C.S. (2018), "Numerical investigation of water evaporation from Fontainebleau sand in an environmental chamber", Eng. Geol., 234, 55-64. https://doi.org/10.1016/j.enggeo.2018.01.005.
- Aung, K.K., Rahardjo, H., Leong, E.C. and Toll, D.G. (2001), "Relationship between porosimetry measurement and soil-water characteristic curve for an unsaturated residual soil", Proceedings of the Unsaturated Soil Concepts and Their Application in Geotechnical Practice, Dordrecht, The Netherlands.
- Brooks, R.H. and Corey, A.T. (1964), "Hydraulic properties of porous media", Hydrology Paper No. 3, Civil Engineering Department, Colorado State University, Fort Collins, Colorado, U.S.A.
- Chen, B., Sun, D.A. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://doi.org/10.12989/gae.2019.18.1.049.
- Chin, K.B., Leong, E.C. and Rahardjo, H. (2010), "A simplified method to estimate the soil-water characteristic curve", Can. Geotech. J., 47(12), 1382-1400. https://doi.org/10.1139/T10-033.
- Fredlund, D.G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, Wiley, New York, U.S.A.
- Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.
- Fredlund, D.G., Sheng, D. and Zhao, J. (2011), "Estimation of soil suction from the soil-water characteristic curve", Can. Geotech. J., 48(2), 186-198. https://doi.org/10.1139/T10-060.
- Fredlund, D.G. (2019), "State of practice for use of the soil-water characteristic curve in geotechnical engineering", Can. Geotech. J., 56, 1059-1069. https://doi.org/10.1139/cgj-2018-0434.
- Gardner, W.R. (1958), "Some stead-state solution of the unsaturated moisture flow equation with application to evaporation from a water-table", Soil Sci., 85(4), 228-232. https://doi.org/10.1097/00010694-195804000-00006.
- Gao, Y. and Sun, D.A. (2017), "Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction", Comput. Geotech., 91, 17-26. https://doi.org/10.1016/j.compgeo.2017.06.016.
- Gao, Y., Sun, D.A. and Wu, Y. (2018), "Volume change behaviour of unsaturated compacted weakly expansive soils", Bull. Eng. Geol. Environ., 77(2), 837-848. https://doi.org/10.1007/s10064-017-1142-0.
- Gao, Y., Sun, D.A., Zhu, Z. and Xu, Y. (2019), "Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range", Acta. Geotech., 14(2), 417-428. https://doi.org/10.1007/s11440-018-0662-5.
- Kong, L.W. and Tan, L.R. (2000), "A simple method of determining the soil-water characteristic curve indirectly", Proceedings of the Asian Conference on Unsaturated Soils, Singapore, May.
- Lebeau, M. and Konrad, J.M. (2010), "A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media", Water Resour. Res., 46(12). https://doi.org/10.1029/2010WR009092.
- Leong, E.C. and Rahardjo, H. (1997), "Review of soil-water characteristic curve equations", J. Geotech. Geoenviron. Eng., 123(12), 1106-1117. https://doi.org/10.1061/(ASCE)10900241(1997)123:12(1106).
- Li, X., Li, J.H. and Zhang, L.M. (2014), "Predicting bimodal soil- water characteristic curves and permeability functions using physically based parameters", Comput. Geotech., 57, 85-96. https://doi.org/10.1016/j.compgeo.2014.01.004.
- Niu, G., Sun, D.A., Shao, L. and Zeng, L. (2019), "The water retention behaviours and pore size distributions of undisturbed and remoulded complete-intense weathering mudstone", Eur. J. Environ. Civ. Eng., 1-18. https://doi.org/10.1080/19648189.2019.1572544.
- Or, D. and Tuller, M. (2002), "Cavitation during desaturation of porous media under tension", Water Resour. Res., 38(5), 19-1-19-14. https://doi.org/10.1029/2001WR000282.
- Oren, A.H., Aksoy, Y.Y., Onal, O. and Demirkiran, H. (2018), "Correlating the hydraulic conductivities of GCLs with some properties of bentonites", Geomech. Eng., 15(5), 1091-1100. https://doi.org/10.12989/gae.2018.15.5.1091.
- Pham, H.Q. and Fredlund, D.G. (2008), "Equations for the entire soil-water characteristic curve of a volume change soil", Can. Geotech. J., 45(4), 443-453. https://doi.org/10.1139/T07-117.
- Romero, E. (1999), "Characterisation and thermo-hydro-mechanical behaviour of unsaturated Boom clay: An experimental study", Ph.D. Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
- Russell, A.R. (2014), "How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas", Geotechnique, 64(5), 379-390. https://doi.org/10.1680/geot.13.P.165.
- Salager, S., Nuth, M., Ferrari, A. and Laloui, L. (2013), "Investigation into water retention behaviour of deformable soils" Can. Geotech. J., 50(2), 200-208. https://doi.org/10.1139/cgj-2011-0409.
- Sheng, D.C., Sloan, S.W. and Gens, A. (2004), "A constitutive model for unsaturated soils: thermomechanical and computational aspects", Comput. Mech., 33(6), 453-465. https://doi.org/10.1007/s00466-003-0545-x.
- Simms, P.H. and Yanful, E.K. (2002), "Predicting soil-water characteristic curves of compacted plastic soils from measured pore-size distributions", Geotechnique, 52(4), 269-278. https://doi.org/10.1680/geot.2002.52.4.269.
- Sun, D.A., Gao, Y., Zhou, A.N. and Sheng, D.C. (2016), "Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay", Bull. Eng. Geol. Environ., 75(2), 781-791. https://doi.org/10.1007/s10064-015-0765-2.
- Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E. and Clifton, A.W. (1996), "Model for the prediction of shear strength with respect to soil suction", Can. Geotech. J., 33(3), 379-392. https://doi.org/10.1139/t96-060.
- Van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
- Washburn, E.W. (1921), "The dynamics of capillary flow", Phys. Rev., 17(3), 273. https://doi.org/10.1103/PhysRev.18.206.
- Wijaya, M. and Leong, E.C. (2016), "Equation for unimodal and bimodal soil-water characteristic curves", Soils Found., 56(2), 291-300. https://doi.org/10.1016/j.sandf.2016.02.011.
- Wu, Y., Jiang, H., Lu, Y. and Sun, D. (2019), "Experimental study on treatment of waste slurry by vacuum preloading with different conditioning agents", Geomech. Eng., 17(6), 543-551. https://doi.org/10.12989/gae.2019.17.6.543.
- Xu, Y. (2004), "Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution", Comput. Geotech., 31(7), 549-557. https://doi.org/10.1016/j.compgeo.2004.07.003.
- Zhai, Q. and Rahardjo, H. (2012), "Determination of soil-water characteristic curve variables", Comput. Geotech., 42, 37-43. https://doi.org/10.1016/j.compgeo.2011.11.010.
- Zhang, F., Cui, Y., Zeng, L., Robinet, J.C., Conil, N. and Talandier, J. (2018a), "Effect of degree of saturation on the unconfined compressive strength of natural stiff clays with consideration of air entry value", Eng. Geol., 237, 140-148. https://doi.org/10.1016/j.enggeo.2018.02.013.
- Zhang, F., Cui, Y.J. and Ye, W.M. (2018b), "Distinguishing macro-and micro-pores for materials with different pore populations", Geotech. Lett., 8(2), 102-110. https://doi.org/10.1680/jgele.17.00144.
- Zhang, J., Niu, G., Li, X. and Sun, D.A. (2020), "Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range", Acta Geotech., 15(1), 265-278. https://doi.org/10.1007/s11440-019-00874-y.
- Zhang, L. and Chen, Q. (2005), "Predicting bimodal soil-water characteristic curves", J. Geotech. Geoenviron. Eng., 131(5), 666-670. https://doi.org/10.1061/(ASCE)10900241(2005)131:5(666).
- Zhou, A., Sheng, D., Sloan, S.W. and Gens, A. (2012), "Interpretation of unsaturated soil behaviour in the stress-saturation space, I: Volume change and water retention behaviour", Comput. Geotech., 43, 178-187. https://doi.org/10.1016/j.compgeo.2012.04.010.
- Zhou, A., Huang, R. and Sheng, D. (2016), "Capillary water retention curve and shear strength of unsaturated soils", Can. Geotech. J., 53(6), 974-987. https://doi.org/10.1139/cgj-2015-0322.
- Zhou, A., Wu, S., Li, J. and Sheng, D. (2018), "Including degree of capillary saturation into constitutive modelling of unsaturated soils", Comput. Geotech., 95, 82-98. https://doi.org/10.1016/j.compgeo.2017.09.017.
- Zhu, H., Zhang, L., Chen, C. and Chan, K. (2018), "Three-dimensional modelling of water flow due to leakage from pressurized buried pipe", Geomech. Eng., 16(4), 423-433. https://doi.org/10.12989/gae.2018.16.4.423.
Cited by
- Effects of dry density and water content on compressibility and shear strength of loess vol.24, pp.5, 2020, https://doi.org/10.12989/gae.2021.24.5.419