Acknowledgement
Supported by : Korea Institute of Geoscience and Mineral Resources (KIGAM)
This research was supported from Basic Research Project of Korea Institute of Geoscience and Mineral Resources (KIGAM).
References
- Becker, D.E., Crooks, J.H.A., Been, K. and Jefferies, M.G. (1987), "Work as a criterion for determining in situ and yield stresses in clays", Can. Geotech. J., 24(4), 549-564. https://doi.org/10.1139/t87-070.
- Burland, J.B. and Burbidge, E. (1985), "Settlement of foundations on sand and gravel", Proc. Inst. Civ. Eng., 76, 1325-1381. https://doi.org/10.1680/iicep.1985.1058.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
- Casagrande, A. (1936), "Determination of preconsolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Massachusetts, U.S.A., June.
- Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
- Cho, H.I., Park, H.J., Kim, D.S. and Choo, Y.W. (2014), "Evaluation of Ko in centrifuge model using shear wave velocity", Geotech. Test. J., 37(2), 255-267. https://doi.org/10.1520/GTJ20130060.
- Cho, H.I., Kim, N.R., Park, H.J. and Kim, D.S. (2017), "Settlement prediction of footings using VS", Appl. Sci., 7(11), 1105. https://doi.org/10.3390/app7111105.
- Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.
- Choo, H. and Burns, S.E. (2014), "Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles", Soil Dyn. Earthq. Eng., 60, 44-50. https://doi.org/10.1016/j.soildyn.2014.01.015.
- Clayton, C.R.I., Hababa, M.B. and Simons, N.E. (1985), "Dynamic penetration resistance and the prediction of the compressibility of a fine-grained sand - a laboratory study", Geotechnique, 35(1), 19-31. https://doi.org/10.1680/geot.1985.35.1.19.
- Fahey, M. (1992), "Shear modulus of cohesionless soil: Variation with stress and strain level", Can. Geotech. J., 29(1), 157-161. https://doi.org/10.1139/t92-017.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div., 98(sm7).
- Jamiolkowski, M. (1985), "New developments in field and laboratory testing of soil", Proceedings of the 11th International Conference on Soil Mechanics, San Francisco, California, U.S.A., August.
- Kim, J.H., Choo, Y.W., Kim, D.J. and Kim, D.S. (2015), "Miniature cone tip resistance on sand in a centrifuge", J. Geotech. Geoenviron. Eng., 142(3), 04015090. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001425.
- Kim, J.H., Cho, H.I., Park, H.J. and Kim, D.S. (2017), "Evaluation of soil state variation using bender elements within centrifuge models", Geotech. Test. J., 40(1), 150-159. https://doi.org/10.1520/GTJ20150139.
- Kim, N.R. and Kim, D.S. (2010), "A shear wave velocity tomography system for geotechnical centrifuge testing", Geotech. Test. J., 33(6), 434-444. https://doi.org/10.1520/GTJ102894.
- Leonards, G.A. and Frost, J.D. (1988), "Settlement of shallow foundations on granular soils", J. Geotech. Eng., 114(7), 791-809. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(791).
- Lo Presti, D.C.F. (1989), "Proprieta dinamiche dei terreni[Dynamic properties of soils]", Proceedings of the 14th Conference on Geotechnics Torino, Department of Structural Engineering, Politecnico di Torino, Turin, Italy (in Italian).
- Martin, C.L., Bouvard, D. and Shima, S. (2003), "Study of particle rearrangement during powder compaction by the discrete element method", J. Mech. Phys. Solids, 51(4), 667-693. https://doi.org/10.1016/S0022-5096(02)00101-1.
- Mayne, P.W. and Kulhawy, F.H. (1982), "Ko-OCR relationships in soil", J. Soil Mech. Found. Div., 108(6), 851-872.
- Mayne, P.W. and Poulos, H.G. (1999), "Approximate displacement influence factors for elastic shallow foundations", J. Geotech. Geoenviron. Eng., 125(6), 453-460. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(453).
- Mesri, G. and Vardhanabhuti, B. (2009), "Compression of granular materials", Can. Geotech. J., 46, 369-392. https://doi.org/10.1139/T08-123.
- Mir, M., Bouafia, A., Rahmani, K. and Aouali, N. (2017), "Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests", Geomech. Eng., 13(1), 119-139. https://doi.org/10.12989/gae.2017.13.1.119.
- Roesler, S.K. (1979), "Anisotropic shear modulus due to stress-anisotropy", J. Geotech. Eng. Div., 105(GT7), 871-880. https://doi.org/10.1061/AJGEB6.0000835
- Schanz, T., Vermeer, P.A. and Bonnier, P.G. (1999), The Hardening Soil Model: Formulation and Verification, in Beyond 2000 in Computational Geotechnics, 281-296.
- Schmertmann, J.H. (1970), "Static cone to compute static settlement over sand", J. Soil Mech. Found. Div., 96, 1011-1043. https://doi.org/10.1061/JSFEAQ.0001418
- Schmertmann, J.H., Brown, P.R. and Hartman, J.P. (1978), "Improved strain influence factor diagrams", J. Geotech. Eng. Div., 104, 1131-1135. https://doi.org/10.1061/AJGEB6.0000683
- Tasiopoulou, P., Taiebat, M., Tafazzoli, N. and Jeremic, B. (2015), "On validation of fully coupled behavior of porous media using centrifuge test results", Coupled Syst. Mech., 4(1), 37-65. http://dx.doi.org/10.12989/csm.2015.4.1.037.
- Umar, M. and Sadrekarimi, A. (2016), "Accuracy of determining pre-consolidation pressure from laboratory tests", Can. Geotech. J., 54(3), 441-450. https://doi.org/10.1139/cgj-2016-0203.
- Yoon, H.K., Lee, C., Kim, H.K. and Lee, J.S. (2011), "Evaluation of preconsolidation stress by shear wave velocity", Smart Struct. Syst., 7(4), 275-287. http://doi.org/10.12989/sss.2011.7.4.275.
- Yu, P. and Richart, F. (1984), "Stress-ratio effects on shear modulus of dry sands", J. Geotech. Eng. Div., 110(3), 331-345. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(331).
Cited by
- A novel preloading method for foundation underpinning for the remodeling of an existing building vol.24, pp.1, 2021, https://doi.org/10.12989/gae.2021.24.1.029