참고문헌
- Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2004b), "Model testing of strip footings with structural skirts", Proc. Inst. Civ. Eng. Ground Improv., 8(4), 171-177. https://doi.org/10.1680/grim.2004.8.4.171.
- Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2006), "Improving the performance of circular foundations using structural skirts", Proc. Inst. Civ. Eng. Ground Improv., 10(3), 125-132. https://doi.org/10.1680/grim.2006.10.3.125.
- Al-Aghbari, M.Y. and Mohamedzein, Y.E. (2004a), "Bearing capacity of strip foundations with structural skirts", Geotech. Geol. Eng., 22(1), 43. https://doi.org/10.1023/B:GEGE.0000013997.79473.e0.
- Al-Aghbari, M.Y. and Mohamedzein, Y.E.A. (2018), "The use of skirts to improve the performance of a footing in sand", Int. J. Geotech. Eng., 1-8. https://doi.org/10.1080/19386362.2018.1429702.
- Ali, O.S., Aggour, M.S. and McCuen, R.H. (2017) "Dynamic soil-pile interactions for machine foundations", Int. J. Geotech. Eng., 11(3), 236-247. https://doi.org/10.1080/19386362.2016.1213479.
- Al-Wakel, S. and Abdulrasool, A. (2018), "Effect of soil stabilized by cement on dynamic response of machine foundations", MATEC Web Conf., 162, 01001.
- Alzabeebee, S. (2017), "Enhanced design approached for rigid and flexible buried pipes using advanced numerical modelling", Ph.D, Thesis, University of Birmingham, Birmingham, U.K.
- Alzabeebee, S. (2019a), "Seismic response and design of buried concrete pipes subjected to soil loads", Tunn. Undergr. Sp. Technol., 93, 103084. https://doi.org/10.1016/j.tust.2019.103084.
- Alzabeebee, S. (2019b), "Response of buried uPVC pipes subjected to earthquake shake" Innov. Infrastruct. Solut., 4(1), 52. https://doi.org/10.1007/s41062-019-0243-y.
- Alzabeebee, S. (2020), "Numerical Analysis of the interference of two active machine foundations", Geotech. Geol. Eng., In Press.
- Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2018a), "A comparative study of the response of buried pipes under static and moving loads", Transport. Geotech., 15, 39-46. https://doi.org/10.1016/j.trgeo.2018.03.001.
- Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2018b), "Development of a novel model to estimate bedding factors to ensure the economic and robust design of rigid pipes under soil loads", Tunn. Undergr. Sp. Technol., 71, 567-578. https://doi.org/10.1016/j.tust.2017.11.009.
- Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2019), "Economical design of buried concrete pipes subjected to UK standard traffic loading", Proc. Inst. Civ. Eng. Struct. Build., 172(2), 141-156. https://doi.org/10.1680/jstbu.17.00035.
- Alzabeebee, S.I. (2014), "Dynamic response of shallow foundation on elastic-plastic clayey soil subjected to impact load", Proceeding of the 1st International Conference on Engineering, Baghdad, Iraq, March.
- Azzam, W.R. and Basha, A.M. (2018), "Utilization of micro-piles for improving the sub-grade under the existing strip foundation: Experimental and numerical study", Innov. Infrastruct. Solut., 3(1), 44. https://doi.org/10.1007/s41062-018-0149-0.
- Azzam, W.R. (2015), "Utilization of the confined cell for improving the machine foundation behavior-Numerical study", J. GeoEng., 10(1), 17-23. http://dx.doi.org/10.6310/jog.2015.10(1).3.
- Baars, S.V. (2018), "Numerical check of the Meyerhof bearing capacity equation for shallow foundations", Innov. Infrastruct. Solut., 3(1), 9. https://doi.org/10.1007/s41062-017-0116-1.
- Bienen, B., Gaudin, C., Cassidy, M.J., Rausch, L., Purwana, O.A. and Krisdani, H. (2012), "Numerical modelling of a hybrid skirted foundation under combined loading", Comput. Geotech., 45, 127-139. https://doi.org/10.1016/j.compgeo.2012.05.009.
- Bose, T., Choudhury, D., Sprengel, J. and Ziegler, M. (2018), "Efficiency of open and infill trenches in mitigating ground-borne vibrations", J. Geotech. Geoenviron. Eng., 144(8), 04018048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001915.
- Bransby, M.F. and Randolph, M.F. (1998), "The effect of skirted foundation shape on response to combined V-MH loadings", Proceedings of the 8th International Offshore and Polar Engineering Conference, Montreal, Canada, May.
- Brinkgreve, R.B.J. (2006). Plaxis: Finite Element Code for Soil and Rock Analyses: 2D Version 8.5: (User's Guide), Balkema, Delft, The Netherlands.
- Cerato, A.B. and Lutenegger, A.J. (2007), "Scale effects of shallow foundation bearing capacity on granular material", J. Geotech. Geoenviron. Eng., 133(10), 1192-1202. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1192).
- Chavda, J.T. and Dodagoudar, G.R. (2018), "Finite element evaluation of ultimate capacity of strip footing: Assessment using various constitutive models and sensitivity analysis", Innov. Infrastruct. Solut., 3(1), 15. https://doi.org/10.1007/s41062-017-0121-4.
- Clark, J.I. (1998), "The settlement and bearing capacity of very large foundations on strong soils: 1996 RM Hardy keynote address", Can. Geotech. J., 35(1), 131-145. https://doi.org/10.1139/t97-070.
- Das, B.M. and Ramana, G.V. (2011), Principles of Soil Dynamics, Cengage Learning.
- Eid, H.T. (2012), "Bearing capacity and settlement of skirted shallow foundations on sand", Int. J. Geomech., 13(5), 645-652. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000237.
- El-Soud, S.A. and Belal, A.M. (2019), "Numerical modeling of rigid strip shallow foundations overlaying geosythetics-reinforced loose fine sand deposits", Arab. J. Geosci., 12(7), 254. https://doi.org/10.1007/s12517-019-4436-7.
- Fattah, M., Al-Neami, M. and Jajjawi, N. (2014), "Prediction of liquefaction potential and pore water pressure beneath machine foundations", Open Eng., 4(3), 226-249. https://doi.org/10.2478/s13531-013-0165-y.
- Fattah, M.Y., Hamood, M.J. and Al-Naqdi, I.A. (2015b), "Finite-element analysis of a piled machine foundation", Proc. Inst. Civ. Eng. Struct. Build., 168(6), 421-432. https://doi.org/10.1680/stbu.14.00053.
- Fattah, M.Y., Salim, N.M. and Al-Shammary, W.T. (2015a), "Effect of embedment depth on response of machine foundation on saturated sand", Arab. J. Sci. Eng., 40(11), 3075-3098. https://doi.org/10.1007/s13369-015-1793-8.
- Forcellini, D. (2017), "Cost Assessment of isolation technique applied to a benchmark bridge with soil structure interaction", Bull. Earthq. Eng., 15(1), 51-69. https://doi.org/10.1007/s10518-016-9953-0.
- Forcellini, D. (2018), "Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction", Bull. Earthq. Eng., 16(5), 2021-2042. https://doi.org/10.1007/s10518-017-0268-6.
- Forcellini, D. (2019), "Numerical simulations of liquefaction on an ordinary building during Italian (20 May 2012) earthquake", Bull. Earthq. Eng., 17(9), 4797-4823. https://doi.org/10.1007/s10518-019-00666-5.
- Fu, Q. and Wu, Y. (2019), "Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads", Geomech. Eng., 19(3), 241-254. https://doi.org/10.12989/gae.2019.19.3.241.
- Gazetas, G. (1980), "Static and dynamic displacements of foundations on heterogeneous multilayered soils", Geotechnique, 30(2), 159-177. https://doi.org/10.1680/geot.1980.30.2.159.
- Gazetas, G. (1981), "Machine foundations on deposits of soft clay overlain by a weathered crust", Geotechnique, 31(3), 387-398. https://doi.org/10.1680/geot.1981.31.3.387.
- Ghosh, P. (2012), "FLAC based numerical studies on dynamic interference of two nearby embedded machine foundations", Geotech. Geol. Eng., 30(5), 1161-1181. https://doi.org/10.1007/s10706-012-9530-5.
- Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinform., 8(3), 207-222. https://doi.org/10.2166/hydro.2006.020b.
- Giustolisi, O. and Savic, D.A. (2009), "Advances in data-driven analyses and modelling using EPR-MOGA", J. Hydroinform., 11(3-4), 225-236. https://doi.org/10.2166/hydro.2009.017.
- Gnananandarao, T., Khatri, V.N. and Dutta, R.K. (2018), "Performance of multi-edge skirted footings resting on sand", Indian Geotech. J., 48(3), 510-519. https://doi.org/10.1007/s40098-017-0270-6.
- Haddad, E.D. and Choobbasti, A.J. (2019), "Response of micropiles in different seismic conditions", Innov. Infrastruct. Solut., 4(1), 53. https://doi.org/10.1007/s41062-019-0226-z.
- Hu, Y., Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 125(11), 924-935. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924).
- Kampas, G., Knappett, J.A., Brown, M.J., Anastasopoulos, I., Nikitas, N. and Fuentes, R. (2019), "The effect of tunnel lining modelling approaches on the seismic response of sprayed concrete tunnels in coarse-grained soils", Soil Dyn. Earthq. Eng., 117, 122-137. https://doi.org/10.1016/j.soildyn.2018.11.018.
- Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.
- Kontoe, S., and Zdravkovic, L., Potts, D.M. and Menkiti, C.O. (2011), "On the relative merits of simple and advanced constitutive models in dynamic analysis of tunnels", Geotechnique, 61(10), 815-829. https://doi.org/10.1680/geot.9.P.141.
- Kumar, M.R. and Ghosh, P. (2020), "A novel vibration screening technique using bamboo: a numerical study", J. Nat. Fibers, 17(2), 258-270. https://doi.org/10.1080/15440478.2018.1480448.
- Liang, T., Knappett, J.A., Leung, A.K. and Bengough, A.G. (2019), "Modelling the seismic performance of root-reinforced slopes using the finite-element method", Geotechnique, 1-17. https://doi.org/10.1680/jgeot.17.P.128.
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144
- Majumder, M. and Ghosh, P. (2016), "Intermittent geofoam in-filled trench for vibration screening considering soil non-linearity", KSCE J. Civ. Eng., 20(6), 2308-2318. https://doi.org/10.1007/s12205-015-0267-6.
- Majumder, M., Ghosh, P. and Rajesh, S. (2017a), "Numerical study on intermittent geofoam in-filled trench as vibration barrier considering soil non-linearity and circular dynamic source", Int. J. Geotech. Eng., 11(3), 278-288. https://doi.org/10.1080/19386362.2016.1215781.
- Majumder, M., Ghosh, P. and Rajesh, S. (2017b), "An innovative vibration barrier by intermittent geofoam-a numerical study", Geomech. Eng., 13(2), 269-284. https://doi.org/10.12989/gae.2017.13.2.269.
- Manahiloh, K.N. (2020), "Dynamic amplification factor in culverts: A parametric study using three-dimensional finite element analysis", Transport. Infrastruct. Geotechnol., 1-25. https://doi.org/10.1007/s40515-019-00097-4
- Moghadam, M.J. and Ashtari, K. (2019), "Numerical analysis of railways on soft soil under various train speeds", Transport. Infrastruct. Geotechnol., 7, 103-125. https://doi.org/10.1007/s40515-019-00092-9.
- Mohasseb, S., Ghazanfari, N., Rostami, M. and Rostami, S. (2019), "Effect of soil-pile-structure interaction on seismic design of tall and massive buildings through case studies", Transport. Infrastruct. Geotechnol., 7(1), 13-45. https://doi.org/10.1007/s40515-019-00086-7.
- Nguyen, Q.V., Fatahi, B. and Hokmabadi, A.S. (2016), "The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction", Struct. Eng. Mech., 58(6), 1045-1075. http://doi.org/10.12989/sem.2016.58.6.1045.
- Ouahab, M.Y., Mabrouki, A., Mellas, M. and Benmeddour, D. (2018), "Effect of load eccentricity on the bearing capacity of strip footings on non-homogenous clay overlying bedrock", Transport. Infrastruct. Geotechnol., 5(2), 169-186. https://doi.org/10.1007/s40515-018-0055-0.
- Pradhan, P.K., Baidya, D.K. and Ghosh, D.P. (2004), "Dynamic response of foundations resting on layered soil by cone model", Soil Dyn. Earthq. Eng., 24(6), 425-434. https://doi.org/10.1016/j.soildyn.2004.03.001.
- Rahil, F.H. and Abd-Almuniem, S.A. (2018), "Behaviour of machine foundations resting on saturated sand granular tire rubber mixtures", IOP Conf. Ser. Mater. Sci. Eng., 433(1), 012022. https://doi.org/10.1088/1757-899X/433/1/012022.
- Rezania, M. and Javadi, A.A. (2007), "A new genetic programming model for predicting settlement of shallow foundations", Can. Geotech. J., 44(12), 1462-1473. https://doi.org/10.1139/T07-063.
- Saikia, A. (2014), "Numerical study on screening of surface waves using a pair of softer backfilled trenches", Soil Dyn. Earthq. Eng., 65, 206-213. https://doi.org/10.1016/j.soildyn.2014.05.012.
- Saikia, A. and Das, U.K. (2014), "Analysis and design of open trench barriers in screening steady-state surface vibrations", Earthq. Eng. Eng. Vib., 13(3), 545-554. https://doi.org/10.1007/s11803-014-0261-x.
- Sajjad, G. and Masoud, M. (2017), "Study of the behaviour of skirted shallow foundations resting on sand", Int. J. Phys. Model. Geotech., 18(3), 117-130. https://doi.org/10.1680/jphmg.16.00079.
- Samal, M.R., Saran, S., Kumar, A. and Mukerjee, S. (2016), "Dynamic behavior of geogrid reinforced pond ash", Int. J. Geotech. Eng., 10(2), 114-122. https://doi.org/10.1179/1939787915Y.0000000019.
- Schweiger, H.F., Fabris, C., Ausweger, G. and Hauser, L. (2019), "Examples of successful numerical modelling of complex geotechnical problems", Innov. Infrastruct. Solut., 4(1), 2. https://doi.org/10.1007/s41062-018-0189-5.
- Shahnazari, H., Shahin, M.A. and Tutunchian, M.A. (2014), "Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils", Int. J. Civ. Eng., 12(1), 55-64.
- Skau, K.S., Chen, Y. and Jostad, H.P. (2018), "A numerical study of capacity and stiffness of circular skirted foundations in clay subjected to combined static and cyclic general loading", Geotechnique, 68(3), 205-220. https://doi.org/10.1680/jgeot.16.P.092.
- Sun, Q., Bo, J. and Dias, D. (2019), "Viscous damping effects on the seismic elastic response of tunnels in three sites", Geomech. Eng., 18(6), 639-650. https://doi.org/10.12989/gae.2019.18.6.639.
- Ujjawal, K.N., Venkateswarlu, H. and Hegde, A. (2019), "Vibration isolation using 3D cellular confinement system: A numerical investigation", Soil Dyn. Earthq. Eng., 119, 220-234. https://doi.org/10.1016/j.soildyn.2018.12.021.
- Venkateswarlu, H., Ujjawal, K.N. and Hegde, A. (2018), "Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells", Geotext. Geomembr., 46(6), 882-896. https://doi.org/10.1016/j.geotexmem.2018.08.006.
- Vivek, P. and Ghosh, P. (2012), "Dynamic interaction of two nearby machine foundations on homogeneous soil", Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, March.
- Vivek, P. (2011), "Static and dynamic interference of strip footings in layered soil", M.Tech Thesis, Indian Institute of Technology Kanpur, India.
- Wolf, J.P. (1998), "Simple physical models for foundation dynamics", Dev. Geotech. Eng., 83, 1-70. https://doi.org/10.1016/S0165-1250(98)80004-7.
- Yang, W., Hussein, M.F.M., Marshall, A.M. and Cox, C. (2013), "Centrifuge and numerical modelling of ground borne vibration from surface sources", Soil Dyn. Earthq. Eng., 44, 78-89. https://doi.org/10.1016/j.soildyn.2012.09.003.
피인용 문헌
- Influence of soil model complexity on the seismic response of shallow foundations vol.24, pp.2, 2020, https://doi.org/10.12989/gae.2021.24.2.193
- Development of orthotropic Winkler-like model for rotating cylindrical shell: Stability analysis vol.26, pp.3, 2020, https://doi.org/10.12989/gae.2021.26.3.253