DOI QR코드

DOI QR Code

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng (School of Civil Engineering, Central South University) ;
  • Jiao, Kangfu (School of Civil Engineering, Central South University) ;
  • Zuo, Shi (School of Civil Engineering, Central South University) ;
  • Yu, Chenghao (School of Civil Engineering, Central South University) ;
  • Tang, Gaopeng (School of Civil Engineering, Central South University)
  • Received : 2018.11.26
  • Accepted : 2020.01.28
  • Published : 2020.02.25

Abstract

This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Guizhou Provincial Department of Transportation Foundation, Guizhou Provincial Science and Technology Agency

This study was financially supported by the National Natural Science Foundation of China (Nos.51478477), Guizhou Provincial Department of Transportation Foundation (No. 2017122058 & No.2018123040), Guizhou Provincial Science and Technology Agency – Key Project of Technology Supporting Plan (No. [2018]2815). All financial supports are greatly appreciated.

References

  1. Baker, R. and Garber, M. (1978), "Theoretical analysis of the stability of slopes", Geotechnique, 28(4), 395-411. http://dx.doi.org/10.1680/geot.1978.28.4.395.
  2. Bandis, S., Lumsden, A.C. and Barton, N.R. (1981), "Experimental studies of scale effects on the shear behaviour of rock joints", Int. J. Rock Mech. Min. Sci., 18(1), 1-21. http://dx.doi.org/10.1016/0148-9062(81)90262-X.
  3. Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1), 1-54. http://dx.doi.org/10.1007/BF01261801.
  4. Basha, B.M. and Babu, G.L.S. (2010), "Reliability assessment of internal stability of reinforced soil structures: A pseudo-dynamic approach", Soil Dyn. Earthq. Eng., 30, 336-353. http://dx.doi.org/10.1016/j.soildyn.2009.12.007.
  5. Basha, B.M. and Moghal, A.A.B. (2013), "Load resistance factor design (LRFD) approach for reliability based seismic design of rock slopes against wedge failures", Proceedings of the Geo-Congress 2013 on Design, Analysis and Performance of Rock Slopes and Rock Fill, San Diego, California, U.S.A., March.
  6. Chen, J., Yin, J.H. and Lee, C.F. (2003), "Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming", Can. Geotech. J., 40(4), 742-752. http://dx.doi.org/10.1139/t03-032.
  7. Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
  8. Choi, S.O. and Chung, S.K. (2004), "Stability analysis of a jointed rock slope with the Barton-Bandis Joint Constitutive Model using UDEC", Int. J. Rock Mech. Min. Sci., 41(2), 581-586. http://dx.doi.org/10.1016/j.ijrmms.2004.03.103.
  9. Du, W. (2018), "Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis", Eng. Geol., 239, 12-21. http://dx.doi.org/10.1016/j.enggeo.2018.03.012.
  10. Feng, P. and Lajtai, E.Z. (1998), "Probabilistic treatment of the sliding wedge with EzSlide", Eng. Geol., 50(1), 153-163. http://dx.doi.org/10.1016/s0013-7952(98)00007-6.
  11. Feng, S.R. (1999), "3D limit equilibrium method for slope stability and its application", Chin. J. Geotech. Eng., 21(6), 657-661.
  12. Fellenius, W. (1936), "Calculation of the stability of earth dams", Proceedings of the Transactions of the 2nd Congress on Large Dams, Washington, D.C., U.S.A., International Commission on Large Dams (ICOLD), Paris, France.
  13. Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485.
  14. Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons, New York, U.S.A.
  15. He, J.M., Xu, M.H., Ma, D.X. and Cao, J. (2012), "The application of Barton structural plane shear strength formula in Murum Hydropower Station, Malaysia", Resour. Environ. Eng., 5, 542-544. http://dx.doi.org/10.16536/j.cnki.issn.1671-1211.2012.05.026.
  16. Hoek, E. and Bray, J.W. (1981), Rock Slope Engineering, The Institution of Mining and Metallurgy, London, England, U.K.
  17. Itasca Consulting Group, Inc. (2007a), 3DEC 4.1 Theory and Background, Minneapolis, Minnesota, U.S.A.
  18. Itasca Consulting Group, Inc. (2007b), 3DEC 4.1 Command Reference, Minneapolis, Minnesota, U.S.A.
  19. Itasca Consulting Group, Inc. (2017), Distinct element method, http://www.itascacg.com/software/products/udec/distinct-element-method.
  20. Janbu, N. (1954), "Application of composite slip surfaces for stability analysis", Proceedings of the European Conference on Stability of Earth Slopes, Stockholm, Sweden, September.
  21. Jiang, Q., Liu, X., Wei, W. and Zhou, C. (2013), "A new method for analyzing the stability of rock wedges", Int. J. Rock Mech. Min. Sci., 60(2), 413-422. http://dx.doi.org/10.1016/j.ijrmms.2013.01.008.
  22. Jiang, Q.Q. (2009), "Stability of point safety factor of slope based on Hoek-Brown criterion", J. Central South. Univ., 40(3), 786-790. http://dx.doi.org/10.1016/S1874-8651(10)60073-7.
  23. Jimenez-Rodriguez, R. and Sitar, N. (2007), "Rock wedge stability analysis using system reliability methods", Rock Mech. Rock Eng., 40, 419-427. http://dx.doi.org/10.1007/s00603-005-0088-x.
  24. Johari, A. and Lari, A.M. (2016), "System reliability analysis of rock wedge stability considering correlated failure modes using sequential compounding method", Int. J. Rock Mech. Min. Sci., 82(3), 61-70. http://dx.doi.org/10.1016/j.ijrmms.2015.12.002.
  25. Johari, A. and Lari, A.M. (2017), "System probabilistic model of rock slope stability considering correlated failure modes", Comput. Geotech., 81, 26-38. http://dx.doi.org/10.1016/j.compgeo.2016.07.010.
  26. Li, C.C., Jiang, P.M and Zhou, A.Z. (2019), "Rigorous solution of slope stability under seismic action", Comput. Geotech., 109, 99-107. http://dx.doi.org/10.1016/j.compgeo.2019.01.018.
  27. Liang, T. and Knappett, J.A. (2017), "Newmark sliding block model for predicting the seismic performance of vegetated slopes", Soil Dyn. Earthq. Eng., 101, 27-40. http://dx.doi.org/10.1016/j.soildyn.2017.07.010.
  28. Li, D., Zhou, C., Lu, W. and Jiang, Q.H. (2009), "A system reliability approach for evaluating stability of rock wedges with correlated failure modes", Comput. Geotech., 36(8), 1298-1307. http://dx.doi.org/10.1016/j.compgeo.2009.05.013.
  29. Lin, Y.L. and Li, X.X. (2014), "Pseudo-static analysis of seismic stabmty of anchored rock slope based on JRC-JMC failure criterion", China Civ. Eng. J., 47(S1), 269-273.
  30. Liu, W.M., Fu, H. and Wu, J.L. (2005), "Current Situation of determination methods of shear strength parameters of rock-mass discontinuities and new thoughts", J. ChongQing JiaoTong Univ., 24(5), 65-67. https://doi.org/10.3969/j.issn.1674-0696.2005.05.016
  31. Liu, L.P., Yao, L.H., Chen, J. and Wang, C.H. (2010), "Rock slope stability analysis based on Hoke-Brown failure criterion", Chin. J. Rock Mech. Eng., 29(S1), 2879-2886. http://dx.doi.org/10.1016/j.compgeo.2016.07.010.
  32. Londe, P., Vigier, G. and Vormeringer, R. (1969) "Stability of rock slopes, a three-dimensional study", J. Soil Mech. Found. Div., 95, 235-262. https://doi.org/10.1061/JSFEAQ.0001220
  33. Loukidis, D., Bandini, P. and Salgado, R. (2003), "Stability of seismically loaded slopes using limit analysis", Geotechnique, 53, 463-479. http://dx.doi.org/10.1680/geot.2003.53.5.463.
  34. Low, B.K. (1997), "Reliability analysis of rock wedges", J. Geotech. Geoenviron. Eng., 123(6), 498-505. http://dx.doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498).
  35. Luo, Q., Zhao, L.H., Li, L., Tan, H.H. and Luo, W. (2013), "Stability analysis of anchored rock slope based on Barton-Bandis failure criterion" Rock Soil Mech., 34(05), 1351-1359. http://dx.doi.org/10.16285/j.rsm.2013.05.004.
  36. Nagpal, A. and Basha, B.M. (2012), "Reliability analysis of anchored rock slopes against planar failure", Proceedings of the Indian Geotechnical Conference, New Delhi, India.
  37. Nathanail, C.P. (1996), "Kinematic analysis of active/passive wedge failure using stereographic projection", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(4), 405-407. http://dx.doi.org/10.1016/0148-9062(95)00079-8.
  38. Nouri H., Fakher A. and Jones C.J.F.P. (2008), "Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembr., 26, 263-278. http://dx.doi.org/10.1016/j.geotexmem.2007.09.002.
  39. Prassetyo, S.H., Gutierrez, M. and Barton, N. (2017), "Nonlinear shear behavior of rock joints using a linearized implementation of the Barton-Bandis model", J. Rock Mech. Geotech. Eng., 9(4), 671-682. http://dx.doi.org/10.1016/j.jrmge.2017.01.006.
  40. Qin, C.Q and Chian, S.C. (2018), "Seismic bearing capacity of non-uniform soil slopes using discretization-based kinematic analysis considering Rayleigh waves", Soil Dyn. Earthq. Eng., 109, 23-32 http://dx.doi.org/10.1016/j.soildyn.2018.02.017.
  41. Sarma, S.K. (1979), "Stability analysis of embankments and slopes", J. Geotech. Eng. Div., 105(12), 1511-1524. http://dx.doi.org/10.1680/geot.1973.23.3.423.
  42. Sharma, S., Raghuvanshi, T.K. and Anbalagan, R. (1995), "Plane failure analysis of rock slopes", Geotech. Geol. Eng., 13(2), 105-111. http://dx.doi.org/10.1007/BF00421876.
  43. Shukla, S.K. and Hossain, M.M. (2011), "Stability analysis of multi-directional anchored rock slope subjected to surcharge and seismic loads", Soil Dyn. Earthq. Eng., 31(5-6), 841-844. http://dx.doi.org/10.1016/j.soildyn.2011.01.008.
  44. Terzaghi K. (1950), Mechanisms of Landslides, Engineering Geology (Berdey) Volume, in Geotechnical Society of America, 83-125.
  45. Xia, C.C. and Sun, Z.G. (2002), Engineering Rock Mass Joint Mechanics, Tongji University Press, Shanghai, China.
  46. Wang, Z.D., Xia, Y.Y. and Xia, G.B. (2015), "Upper bound limit analysis method for stability analysis of bedding rock slopes", Rock Soil Mech., 36(2), 576-583. http://dx.doi.org/10.16285/j.rsm.2015.02.038.
  47. Wittke, W. (2015), "Rock mechanics based on an anisotropic jointed rock model (AJRM)", J. Rock Mech. Geotech. Eng., 7(5), 607-608. https://doi.org/10.1016/j.jrmge.2015.07.001
  48. Wittke W. (2014), Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM), John Wiley & Sons.
  49. Wyllie, D. (2004), Rock Slope Engineering: Civil and Mining, Spon Press, New York, U.S.A.
  50. Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., 8(1), 97-111. http://dx.doi.org/10.12989/gae.2015.8.1.097.
  51. Zhang, G. and Zhu, W.S. (1993), "Parameter sensitivity analysis and test scheme optimization", Rock Soil Mech., 14(1), 51-58.
  52. Zhao, J. (1998), "A new JRC-JMC shear strength criterion for rock joint", Chin. J. Rock Mech. Eng., 17, 349-357.
  53. Zhao, L.H., Cao, J., Zhang, Y. and Luo, Q. (2015), "Effect of hydraulic distribution form on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion", Geomech. Eng., 8(3), 391-414. http://doi.org/10.12989/gae.2015.8.3.391.
  54. Zhao, L.H., Cheng, X., Zhang, Y., Li, L. and Li, D.J. (2016), "Stability analysis of seismic slopes with cracks", Comput. Geotech., 77, 77-90. http://dx.doi.org/10.1016/j.compgeo.2016.04.007.
  55. Zhao, L.H., Cheng, X., Dan, H.C., Tang, Z.P. and Zhang, Y. (2017), "Effect of vertical earthquake component on the permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion", Soils Found., 57(2), 237-251. http://dx.doi.org/10.1016/j.sandf.2016.12.002.

Cited by

  1. Theoretical model for the shear strength of rock discontinuities with non-associated flow laws vol.24, pp.4, 2020, https://doi.org/10.12989/gae.2021.24.4.307