Acknowledgement
Supported by : Inner Mongolia Universities
This work is finically supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (Grant No. SHJT-17-42.7), and Key Scientific Research Project of Inner Mongolia Universities (NJZZ20300).
References
- Amitrano, D. and Helmstetter, A. (2006), "Brittle creep, damage, and time to failure in rocks", J. Geophys. Res., 111(B11), B11201. https://doi.org/10.1029/2005JB004252.
- Ashby, M.F. and Sammis, C.G. (1990), "The damage mechanics of brittle solids in compression", Pure Appl. Geophys., 133(3), 489-521. https://doi.org/10.1007/BF00878002.
- Atkinson, B.K. (1984), "Subcritical crack growth in geological materials", J. Geophys. Res., 89(B6), 4077-4114. https://doi.org/10.1029/JB089iB06p04077.
- Bahrani, N., Kaiser, P.K. and Valley, B. (2014), "Distinct element method simulation of an analogue for a highly interlocked, nonpersistently jointed rock mass", Int. J. Rock Mech. Min. Sci., 71,117-130. https://doi.org/10.1016/j.ijrmms.2014.07.005
- Bhat, H.S., Sammis, C.G. and Rosakis, A.J. (2011), "The micromechanics of Westerly granite at large compressive loads", Pure Appl. Geophys., 168(12), 2181-2198. https://doi.org/10.1007/s00024-011-0271-9
- Bikong, C., Hoxha, D. and Shao, J.F. (2015), "A micro-macro model for time-dependent behavior of clayey rocks due to anisotropic propagation of microcracks", Int. J. Plasticity, 69, 73-88. https://doi.org/10.1016/j.ijplas.2015.02.001.
- Brantut, N., Heap, M.J., Meredith, P.G. and Baud, P. (2013), "Time-dependent cracking and brittle creep in crustal rocks: A review", J. Struct. Geol., 52, 17-43. https://doi.org/10.1016/j.jsg.2013.03.007.
- Cai, M., Kaiser, P.K., Tasaka, Y., Maejima, T., Morioka, H. and Minami, M. (2004), "Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations", Int. J. Rock Mech. Min. Sci., 41(5), 833-847. https://doi.org/10.1016/j.ijrmms.2004. 02.001.
- Chen, W. and Konietzky, H. (2014), "Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks", Tectonophysics, 633, 164-175. https://doi.org/10.1016/j.tecto.2014.06.033.
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1980.30.3.331.
- Damjanac, B. and Fairhurst, C. (2010), "Evidence for a long-term strength threshold in crystalline rock", Rock Mech. Rock Eng., 43(5), 513-531. https://doi.org/10.1007/s00603-010-0090-9
- Gutierrez-Ch, J.G., Senent, S. and Jimenez, R. (2019), "Distinct Element Method Simulation of Creep Behaviour", Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York, U.S.A. June.
- Itasca Consulting Group Inc. (2004), Particle Flow Code, Itasca Consulting Group Inc., Sudbury, Canada.
- Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach", Eng. Anal. Bound. Elem., 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009.
- Lajtai, E.Z. and Bielus, LP. (1986), "Stress corrosion cracking of lac du bonnet granite in tension and compression", Rock Mech. Rock Eng., 19(2), 71-87. https://doi.org/10.1007/BF01042525.
- Li, H., Yang, C.H., Ma, H.L., Shi, X.L., Zhang, H.N. and Dong, Z.K. (2020), "A 3D grain-based creep model (3D-GBCM) for simulating long-term mechanical characteristic of rock salt", J. Petrol. Sci. Eng., 185, 106672. https://doi.org/10.1016/j.petrol.2019.106672.
- Li, W., Han, Y., Wang, T. and Ma, J. (2017), "DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock", J. Nat. Gas Sci. Eng., 46, 38-46. https://doi.org/10.1016/j.jngse.2017.07.013
- Li, X. and Konietzky, H. (2014), "Time to failure prediction scheme for rocks", Rock Mech. Rock Eng., 47(4), 1493-1503. https://doi.org/10.1007/s00603-013-0447-y.
- Liu, G. and Cai, M. (2018), "Modeling time-dependent failure of brittle rock using PFC grain-based model", Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, Washington, U.S.A., June.
- Malan, D.F. (2002), "Simulation of the time-dependent behavior of excavations in hard rock", Rock Mech. Rock Eng., 35(4), 225-254. https://doi.org/10.1007/s00603-002-0026-0.
- Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35(3-6), 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7.
- Moghadam, N.S., Mirzabozorg, H. and Noorzad, A. (2013), "Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure", Tunn. Undergr. Sp. Technol., 33, 171-185. https://doi.org/10.1016/j.tust.2012.10.001.
- Mohanty, S. and Vandergrift, T. (2012), "Long term stability evaluation of an old underground gas storage cavern using unique numerical methods", Tunn. Undergr. Sp. Technol., 30, 145-154. https://doi.org/10.1016/j.tust.2012.02.015.
- Potyondy, D.O. (2007), "Simulating stress corrosion with a bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 44(5), 677-691. https://doi.org/10.1016/j.ijrmms.2006.10.002.
- Scholz, C.H. (1968), "The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes", Bull. Seismol. Soc. Amer., 58(1), 399-415. https://doi.org/10.1785/BSSA0580010399
- Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Timedependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunn. Undergr. Sp. Technol., 38, 348-356. https://doi.org/10.1016/j.tust.2013.07.014.
- Shin, K., Okubo, S., Fukui, K. and Hashiba, K. (2005), "Variation in strength and creep life of six Japanese rocks", Int. J. Rock Mech. Min. Sci., 42(2), 251-260. https://doi.org/10.1016/j.ijrmms.2004.08.009.
- Sone, H and Zoback, M.D. (2014), "Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress", Int. J. Rock Mech. Min. Sci., 69, 120-132. https://doi.org/10.1016/j.tust.2013.07.014.
- Song, Z.Y., Konietzky, H. and Herbst, M. (2019), "Bondedparticle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotechnica, 14(4), 955-971. https://doi.org/10.1007/s11440-018-0723-9.
- Wang, M.Z. and Cai, M. (2020), "A grain-based time-to-failure creep model for brittle rocks", Comput. Geotech., 119, 103344. https://doi.org/10.1016/j.compgeo.2019.103344.
- Wu, K. and Shao, Z.S. (2019a), "Visco-elastic analysis on the effect of flexible layer on mechanical behavior of tunnels", Int. J. Appl. Mech., 11(3), 1950027. https://doi.org/10.1142/S1758825119500273.
- Wu, K. and Shao, Z.S. (2019b), "Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks", J. Eng. Mech., 145(10), 04019077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001657.
- Wu, K., Shao, Z.S., Qin, S. and Li, B.X. (2020), "Determination of deformation mechanism and countermeasures in silty clay tunnel", J. Perform. Constr. Fac., 34(1), 04019095. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001381.
- Xue, Y.T, Mishra, B. and Gao, D. (2017), "Numerical and laboratory analysis of relaxation tests for determining timedependent properties of rock", Geotech. Geol. Eng., 35(2), 615-629. https://doi.org/10.1007/s10706-016-0129-0.
Cited by
- Long-term behavior of earth pressure around a high-filled cut-and-cover tunnel vol.26, pp.4, 2020, https://doi.org/10.12989/gae.2021.26.4.311
- Burger’s Bonded Model for Distinct Element Simulation of the Multi-Factor Full Creep Process of Soft Rock vol.9, pp.9, 2020, https://doi.org/10.3390/jmse9090945