DOI QR코드

DOI QR Code

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu (Department of Civil Engineering, National Institute of Technology) ;
  • Rangaswamy, Kodi (Department of Civil Engineering, National Institute of Technology)
  • 투고 : 2019.08.22
  • 심사 : 2020.02.19
  • 발행 : 2020.03.25

초록

In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

키워드

참고문헌

  1. Andrew, R.M. (2018), "Global $CO_2$ emissions from cement production, 1928-2017", Earth Syst. Sci. Data, 10(1), 2213-2239. https://doi.org/10.5194/essd-10-2213-2018.
  2. Ates, A. (2016), "Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC)", Compos. Part B, 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049.
  3. Arasan, S. and Nasirpur, O. (2015), "The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand", Geomech. Eng., 8(3), 361-375. https://doi.org/10.12989/gae.2015.8.3.361.
  4. Bahmani, S.H., Huat, B.B., Asadi, A. and Farzadina, N. (2014), "Stabilization of residual soil using $SiO_2$ nanoparticles and cement", Construct. Build. Mater., 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086.
  5. Bell, F.G. (1976), "The influence of the mineral contents of clays on their stabilization by cement", Bull. Assoc. Eng. Geol., 13(4), 267-278.
  6. Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nano silica, silica fume and fly ash- incorporated cement mortars", Mater. Res., 17(3), 570-582. http://dx.doi.org/10.1590/S151614392014005000054.
  7. Changizi, F. and Haddad, A. (2015), "Strength properties of soft clay treated with mixture of nano-$SiO_2$ and recycled polyester fiber", J. Rock Mech. Geotech. Eng., 7(4), 367-378. http://doi.org/10.1016/j.jrmge.2015.03.013.
  8. Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), "Physicochemical and engineering behavior of cement treated clays", J. Geotech. Geoenviron. Eng., 130(7), 696-706. http://doi.org/1010.1061/(ASCE)1090-0241(2004)130:7(696).
  9. Choobbasti, A.J., Vafaei, A. and Kutanaei, S.S. (2015), "Mechanical properties of sandy soil improved with cement and nanosilica", Open Eng., 5(1), 111-116. http://doi.org/10.1515/eng-2015-0011.
  10. Correia, A.A.S. and Rasteiro, M.G. (2016), "Nanotechnology applied to chemical soil stabilization", Proc. Eng., 143, 1252-1259. http://doi.org/10.1016/j.proeng.2016.06.113.
  11. Eujine, G.N., Sankar, N. and Chandrakaran, S. (2017), "Accelerated subgrade stabilization using enzymatic limetechnique", J. Mater. Civ. Eng., 29(9), 1-7. http://doi.org/10.1061/(ASCE)MT.19435533.0001923.
  12. Feynman, R. (1960), "There's plenty of room at the bottom, reprint from speech given at annual meeting of the American physical society", Eng. Sci., 23, 22-36.
  13. Givi, A.N., Rashid, S.A. and Aziz, F.N.A. (2013), "Influence of 15 and 80 nano-$SiO_2$ particles addition on mechanical and physical properties of ternary blended concrete incorporating rice husk ash", J. Exper. Nanosci., 8(1), 1-18. http://doi.org/10.1080/17458080.2010.548834.
  14. Hanson, J.L., Yesiller, N., Badawy, A.E., Mettler, R. and Stine, J. S. (2016), "Determination of the index properties of clay soils in the presence of nanoparticles", Proceedings of the Geo-Chicago 2016, Chicago, Illinois, U.S.A., August.
  15. Hessam, S., Huat, B.B.K, Asadi, A. and Farzadnia, N. (2014), "Stabilization of residual soil using $SiO_2$ nanoparticles and cement", Construct. Build. Mater., 64, 350-359. http://doi.org/10.1016/j.conbuildmat.2014.04.086.
  16. Horpibulsuk, S. (2006), Strength and Microstructure of Cement Stabilized Clay, in Scanning Electron Microscopy, Suranaree University of Technology, Thailand, 439-460.
  17. Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D. and Shah, S. P (2012), "Cement & concrete composites effects of colloidal nano$SiO_2$ on fly ash hydration", Cement Concrete Compos., 34, 1095-1103. http://doi.org/10.1016/j.cemconcomp.2012.06.013.
  18. IS 2720(Part 1) (1983), Methods of Test for Soils: Preparation of Dry Soil Samples for Various Tests (Second Revision), Reaffirmed- 2006, Bureau of Indian Standards, New Delhi, India.
  19. IS 2720(Part 5) (1985), Methods of Test for Soils: Determination of Liquid and Plastic limit (Second Revision), Reaffirmed- May 2015, Bureau of Indian Standards, New Delhi, India.
  20. IS 2720(Part 10) (1991), Methods of Test for Soils: Determination of Unconfined compressive strength (Second Revision), Reaffirmed- 2006, Bureau of Indian Standards; New Delhi, India.
  21. Jo, B., Kim, C., Tae, G. and Park, J. (2007), "Characteristics of cement mortar with nano-$SiO_2$ particles", Construct. Build. Mater., 21, 1351-1355. http://doi.org/10.1016/j.conbuildmat.2005.12.020.
  22. Keith, D.W., Holmes, G., Angelo D. and Heidel K. (2018), "A Process for Capturing $CO_2$ from the Atmosphere", Joule, 2(8), 1573-1594, https://doi.org/10.1016/j.joule.2018.05.006.
  23. Khater, H.M. (2016), "Nano-silica effect on the physicomechanical properties of geopolymer composites", Adv. Nano Res., 4(3), 181-195. https://doi.org/10.12989/anr.2016.4.3.181.
  24. Kutanaei, S.S. and Choobbasti, A.J. (2017), "Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand", J. Mater. Civ. Eng., 29(3), 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761.
  25. Latifi, N., Meehan, C.L., Majid, M.Z.A. and Horpibulsuk, S. (2016), "Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study", Appl. Clay Sci., 132-133, 182-193. https://doi.org/10.1016/j.clay.2016.06.004.
  26. Lescinskis, O., Svinka, R. and Svinka, V. (2018), "Adsorption of organic compounds on refined latvian clay", Key Eng. Mater., 788, 83-88. https://doi.org/10.4028/www.scientific.net/KEM.788.83.
  27. Li, H., Zhang, M. hua and Ou, J.P. (2006), "Abrasion resistance of concrete containing nano-particles for pavement", Wear, 260(11-12), 1262-1266. http://doi.org/10.1016/j.wear.2005.08.006.
  28. Madejova, J. and Komade, P. (2001), "Baseline studies of the clay minerals society source clays", Clays Clay Miner., 49(5), 410-432. https://doi.org/10.1346/CCMN.2001.0490508
  29. Majeed, Z.H., Taha, M.R. and Jawad, I.T. (2014), "Stabilization of soft soil using nanomaterials", Res. J. Appl. Sci. Eng. Technol., 8(4), 503-509. https://doi.org/10.19026/rjaset.8.999
  30. Moayed, R.Z. and Rahmani, H. (2017), "Effect of nano - $SiO_2$ solution on the strength characteristics of kaolinite", Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 11(1), 83-87.
  31. Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Construct., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.
  32. Onitsuka, K., Modmoltin, C. and Kouno, M. (2001), "Investigation on microstructure and strength of lime and cement stabilized Ariake clay", Rep. Fac. Sci. Eng., Saga University, 30(1), 49-63.
  33. Pashabavandpouri, M.A. and Jahangiri, S. (2015), "Effect of nano silica on swelling, compaction and strength properties of clayey soil stabilized with lime", J. Appl. Environ. Biol. Sci., 5(7S), 538-548.
  34. Qing, Y. (2007), "Influence of nano-$SiO_2$ addition on properties of hardened cement paste as compared with silica fume", Construct. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
  35. Saikia, B.J. and Parthasarathy, G. (2010), "Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India", J. Modern Phys., 01(4), 206-210. https://doi.org/10.4236/jmp.2010.14031.
  36. Saranya, P., Praveen, N. and Shashikala, A.P. (2019), "Performance evaluation of geopolymer concrete beams under monotonic loading", Structures, 20, 560-569. https://doi.org/10.1016/j.istruc.2019.06.010.
  37. Shahin, S.S., Laila, P. and Fayed, A.E. (2017), "Review of nano additives in stabilization of soil", Proceedings of the 7th International Conference on Nano-Technology in Construction, Tbilisi, Georgia September.
  38. Sobolev, K., Flores, I., Hermosillo, R. and Torres-martinez, L.M (2006), "Nanomaterials and nanotechnology for high-performance cement composites", Proceedings of the ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, Colorado, U.S.A., November.
  39. Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E. and Cuellar, E.L. (2009), "Engineering of $SiO_2$ nanoparticles for optimal performance in nano cement-based materials", Nanotechnol. Construct., 3, 139-148. https://doi.org/10.1007/978-3-642-00980-8_18.
  40. Solanki, P. and Zaman, M. (2012), "Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers", Scanning Electron Microscopy, 771-798. https://doi.org/10.5772/34176.
  41. Stavridakis, E.I. and Hatzigogos, T.N. (1999), "Influence of liquid limit and slaking on cement stabilized clayey admixtures", Geotech. Geol. Eng., 17(2), 145-154. https://doi.org/10.1023/A:1008953005726.
  42. Stefanidou, M. and Papayianni, I. (2012), "Influence of nano-$SiO_2$ on the portland cement pastes", Compos. Part B, 43(6), 2706-2710. https://doi.org/10.1016/j.compositesb.2011.12.015.
  43. Stephan, G.L.D. (2012), "The influence of nano-silica on the hydration of ordinary Portland cement", J. Mater. Sci., 47(2), 1011-1017. https://doi.org/10.1007/s10853-011-5881-1.
  44. Taha, M.R., Alsharef, J.M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
  45. Taha, M.R., Jawad, I.T. and Majeed, Z.H. (2015), "Treatment of soft soil with nano-magnesium oxide", Nanotechnol. Construct., 1, 1-9.
  46. Terzaghi, K., Peck, R.B. and Mesri, G. (1948), Soil Mechanics in Engineering Practice, John Wiley & Sons Inc. New York, U.S.A>
  47. Thomas, G., and Rangaswamy, K. (2019), "Strength behavior of enzymatic cement treated clay", Int. J. Geotech. Eng., 1-14. https://doi.org/10.1080/19386362.2019.1622854.
  48. Wang, T. (2019), "U.S. Cement Prices 2007-2018", Statistica, U.S.A. https://www.statista.com/statistics/219339/us-prices-of-cement/
  49. Xi, F., Davis, S.J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y. and Liu, Z. (2016), "Substantial global carbon uptake by cement carbonation", Nature Geosci., 9, 880-883. https://doi.org/10.1038/ngeo2840.
  50. Yilmaz, Y., Eun, J. and Goren, A. (2018), "Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils", Geomech. Eng., 16(4), 375-384. https://doi.org/10.12989/gae.2018.16.4.375.

피인용 문헌

  1. Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine vol.25, pp.2, 2020, https://doi.org/10.12989/gae.2021.25.2.143
  2. Effect of Nano-Additives on the Strength and Durability Characteristics of Marl vol.11, pp.10, 2020, https://doi.org/10.3390/min11101119