References
-
Andrew, R.M. (2018), "Global
$CO_2$ emissions from cement production, 1928-2017", Earth Syst. Sci. Data, 10(1), 2213-2239. https://doi.org/10.5194/essd-10-2213-2018. - Ates, A. (2016), "Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC)", Compos. Part B, 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049.
- Arasan, S. and Nasirpur, O. (2015), "The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand", Geomech. Eng., 8(3), 361-375. https://doi.org/10.12989/gae.2015.8.3.361.
-
Bahmani, S.H., Huat, B.B., Asadi, A. and Farzadina, N. (2014), "Stabilization of residual soil using
$SiO_2$ nanoparticles and cement", Construct. Build. Mater., 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086. - Bell, F.G. (1976), "The influence of the mineral contents of clays on their stabilization by cement", Bull. Assoc. Eng. Geol., 13(4), 267-278.
- Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nano silica, silica fume and fly ash- incorporated cement mortars", Mater. Res., 17(3), 570-582. http://dx.doi.org/10.1590/S151614392014005000054.
-
Changizi, F. and Haddad, A. (2015), "Strength properties of soft clay treated with mixture of nano-
$SiO_2$ and recycled polyester fiber", J. Rock Mech. Geotech. Eng., 7(4), 367-378. http://doi.org/10.1016/j.jrmge.2015.03.013. - Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), "Physicochemical and engineering behavior of cement treated clays", J. Geotech. Geoenviron. Eng., 130(7), 696-706. http://doi.org/1010.1061/(ASCE)1090-0241(2004)130:7(696).
- Choobbasti, A.J., Vafaei, A. and Kutanaei, S.S. (2015), "Mechanical properties of sandy soil improved with cement and nanosilica", Open Eng., 5(1), 111-116. http://doi.org/10.1515/eng-2015-0011.
- Correia, A.A.S. and Rasteiro, M.G. (2016), "Nanotechnology applied to chemical soil stabilization", Proc. Eng., 143, 1252-1259. http://doi.org/10.1016/j.proeng.2016.06.113.
- Eujine, G.N., Sankar, N. and Chandrakaran, S. (2017), "Accelerated subgrade stabilization using enzymatic limetechnique", J. Mater. Civ. Eng., 29(9), 1-7. http://doi.org/10.1061/(ASCE)MT.19435533.0001923.
- Feynman, R. (1960), "There's plenty of room at the bottom, reprint from speech given at annual meeting of the American physical society", Eng. Sci., 23, 22-36.
-
Givi, A.N., Rashid, S.A. and Aziz, F.N.A. (2013), "Influence of 15 and 80 nano-
$SiO_2$ particles addition on mechanical and physical properties of ternary blended concrete incorporating rice husk ash", J. Exper. Nanosci., 8(1), 1-18. http://doi.org/10.1080/17458080.2010.548834. - Hanson, J.L., Yesiller, N., Badawy, A.E., Mettler, R. and Stine, J. S. (2016), "Determination of the index properties of clay soils in the presence of nanoparticles", Proceedings of the Geo-Chicago 2016, Chicago, Illinois, U.S.A., August.
-
Hessam, S., Huat, B.B.K, Asadi, A. and Farzadnia, N. (2014), "Stabilization of residual soil using
$SiO_2$ nanoparticles and cement", Construct. Build. Mater., 64, 350-359. http://doi.org/10.1016/j.conbuildmat.2014.04.086. - Horpibulsuk, S. (2006), Strength and Microstructure of Cement Stabilized Clay, in Scanning Electron Microscopy, Suranaree University of Technology, Thailand, 439-460.
-
Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D. and Shah, S. P (2012), "Cement & concrete composites effects of colloidal nano
$SiO_2$ on fly ash hydration", Cement Concrete Compos., 34, 1095-1103. http://doi.org/10.1016/j.cemconcomp.2012.06.013. - IS 2720(Part 1) (1983), Methods of Test for Soils: Preparation of Dry Soil Samples for Various Tests (Second Revision), Reaffirmed- 2006, Bureau of Indian Standards, New Delhi, India.
- IS 2720(Part 5) (1985), Methods of Test for Soils: Determination of Liquid and Plastic limit (Second Revision), Reaffirmed- May 2015, Bureau of Indian Standards, New Delhi, India.
- IS 2720(Part 10) (1991), Methods of Test for Soils: Determination of Unconfined compressive strength (Second Revision), Reaffirmed- 2006, Bureau of Indian Standards; New Delhi, India.
-
Jo, B., Kim, C., Tae, G. and Park, J. (2007), "Characteristics of cement mortar with nano-
$SiO_2$ particles", Construct. Build. Mater., 21, 1351-1355. http://doi.org/10.1016/j.conbuildmat.2005.12.020. -
Keith, D.W., Holmes, G., Angelo D. and Heidel K. (2018), "A Process for Capturing
$CO_2$ from the Atmosphere", Joule, 2(8), 1573-1594, https://doi.org/10.1016/j.joule.2018.05.006. - Khater, H.M. (2016), "Nano-silica effect on the physicomechanical properties of geopolymer composites", Adv. Nano Res., 4(3), 181-195. https://doi.org/10.12989/anr.2016.4.3.181.
- Kutanaei, S.S. and Choobbasti, A.J. (2017), "Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand", J. Mater. Civ. Eng., 29(3), 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761.
- Latifi, N., Meehan, C.L., Majid, M.Z.A. and Horpibulsuk, S. (2016), "Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study", Appl. Clay Sci., 132-133, 182-193. https://doi.org/10.1016/j.clay.2016.06.004.
- Lescinskis, O., Svinka, R. and Svinka, V. (2018), "Adsorption of organic compounds on refined latvian clay", Key Eng. Mater., 788, 83-88. https://doi.org/10.4028/www.scientific.net/KEM.788.83.
- Li, H., Zhang, M. hua and Ou, J.P. (2006), "Abrasion resistance of concrete containing nano-particles for pavement", Wear, 260(11-12), 1262-1266. http://doi.org/10.1016/j.wear.2005.08.006.
- Madejova, J. and Komade, P. (2001), "Baseline studies of the clay minerals society source clays", Clays Clay Miner., 49(5), 410-432. https://doi.org/10.1346/CCMN.2001.0490508
- Majeed, Z.H., Taha, M.R. and Jawad, I.T. (2014), "Stabilization of soft soil using nanomaterials", Res. J. Appl. Sci. Eng. Technol., 8(4), 503-509. https://doi.org/10.19026/rjaset.8.999
-
Moayed, R.Z. and Rahmani, H. (2017), "Effect of nano -
$SiO_2$ solution on the strength characteristics of kaolinite", Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng., 11(1), 83-87. - Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Construct., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.
- Onitsuka, K., Modmoltin, C. and Kouno, M. (2001), "Investigation on microstructure and strength of lime and cement stabilized Ariake clay", Rep. Fac. Sci. Eng., Saga University, 30(1), 49-63.
- Pashabavandpouri, M.A. and Jahangiri, S. (2015), "Effect of nano silica on swelling, compaction and strength properties of clayey soil stabilized with lime", J. Appl. Environ. Biol. Sci., 5(7S), 538-548.
-
Qing, Y. (2007), "Influence of nano-
$SiO_2$ addition on properties of hardened cement paste as compared with silica fume", Construct. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001. - Saikia, B.J. and Parthasarathy, G. (2010), "Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India", J. Modern Phys., 01(4), 206-210. https://doi.org/10.4236/jmp.2010.14031.
- Saranya, P., Praveen, N. and Shashikala, A.P. (2019), "Performance evaluation of geopolymer concrete beams under monotonic loading", Structures, 20, 560-569. https://doi.org/10.1016/j.istruc.2019.06.010.
- Shahin, S.S., Laila, P. and Fayed, A.E. (2017), "Review of nano additives in stabilization of soil", Proceedings of the 7th International Conference on Nano-Technology in Construction, Tbilisi, Georgia September.
- Sobolev, K., Flores, I., Hermosillo, R. and Torres-martinez, L.M (2006), "Nanomaterials and nanotechnology for high-performance cement composites", Proceedings of the ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, Colorado, U.S.A., November.
-
Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P.L., Zarazua, E. and Cuellar, E.L. (2009), "Engineering of
$SiO_2$ nanoparticles for optimal performance in nano cement-based materials", Nanotechnol. Construct., 3, 139-148. https://doi.org/10.1007/978-3-642-00980-8_18. - Solanki, P. and Zaman, M. (2012), "Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers", Scanning Electron Microscopy, 771-798. https://doi.org/10.5772/34176.
- Stavridakis, E.I. and Hatzigogos, T.N. (1999), "Influence of liquid limit and slaking on cement stabilized clayey admixtures", Geotech. Geol. Eng., 17(2), 145-154. https://doi.org/10.1023/A:1008953005726.
-
Stefanidou, M. and Papayianni, I. (2012), "Influence of nano-
$SiO_2$ on the portland cement pastes", Compos. Part B, 43(6), 2706-2710. https://doi.org/10.1016/j.compositesb.2011.12.015. - Stephan, G.L.D. (2012), "The influence of nano-silica on the hydration of ordinary Portland cement", J. Mater. Sci., 47(2), 1011-1017. https://doi.org/10.1007/s10853-011-5881-1.
- Taha, M.R., Alsharef, J.M.A., Khan, T.A., Aziz, M. and Gaber, M. (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
- Taha, M.R., Jawad, I.T. and Majeed, Z.H. (2015), "Treatment of soft soil with nano-magnesium oxide", Nanotechnol. Construct., 1, 1-9.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1948), Soil Mechanics in Engineering Practice, John Wiley & Sons Inc. New York, U.S.A>
- Thomas, G., and Rangaswamy, K. (2019), "Strength behavior of enzymatic cement treated clay", Int. J. Geotech. Eng., 1-14. https://doi.org/10.1080/19386362.2019.1622854.
- Wang, T. (2019), "U.S. Cement Prices 2007-2018", Statistica, U.S.A. https://www.statista.com/statistics/219339/us-prices-of-cement/
- Xi, F., Davis, S.J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y. and Liu, Z. (2016), "Substantial global carbon uptake by cement carbonation", Nature Geosci., 9, 880-883. https://doi.org/10.1038/ngeo2840.
- Yilmaz, Y., Eun, J. and Goren, A. (2018), "Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils", Geomech. Eng., 16(4), 375-384. https://doi.org/10.12989/gae.2018.16.4.375.
Cited by
- Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine vol.25, pp.2, 2020, https://doi.org/10.12989/gae.2021.25.2.143
- Effect of Nano-Additives on the Strength and Durability Characteristics of Marl vol.11, pp.10, 2020, https://doi.org/10.3390/min11101119