DOI QR코드

DOI QR Code

Anti-Developmental Effects of Imazosulfuron on Zebrafish Embryos During Development

  • Park, Sunwoo (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Song, Gwonhwa (Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lim, Whasun (Department of Food and Nutrition, College of Science and Technology, Kookmin University)
  • 투고 : 2020.02.28
  • 심사 : 2020.03.12
  • 발행 : 2020.03.31

초록

Imazosulfuron is globally considered as a relatively safe herbicide that controls plant growth by interfering with amino acid synthesis. It is stable, persists in the soil, and has low toxicity; however, studies about the toxic effects of imazosulfuron on non-targeted aquatic vertebrates are scarce. In this study, imazosulfuron was able to induce acute lethality on zebrafish embryos within 48 h. Imazosulfuron also had adverse effects on heartbeats and induced abnormal development with pericardial edema and scoliosis. Moreover, apoptosis and oxidative stress were increased by imazosulfuron in a dose-dependent manner. Thus, all our results showed that imazosulfuron has toxic effects on zebrafish embryogenesis.

키워드

참고문헌

  1. Anderson PA. 1996. The heart and development. Semin. Perinatol. 20:482-509. https://doi.org/10.1016/S0146-0005(96)80064-4
  2. Biehlmaier O, Neuhauss SC, Kohler K. 2001. Onset and time course of apoptosis in the developing zebrafish retina. Cell Tissue Res. 306:199-207. https://doi.org/10.1007/s004410100447
  3. Blair AM and Martin TD. 1988. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pestic. Sci. 22:195-219. https://doi.org/10.1002/ps.2780220303
  4. Buchan JG, Gray RS, Gansner JM, Alvarado DM, Burgert L, Gitlin JD, Gurnett CA, Goldsmith MI. 2014. Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev. Dynam. 243:1646-1657. https://doi.org/10.1002/dvdy.24208
  5. Dunn-Meynell AA, Routh VH, McArdle JJ, Levin BE. 1997. Lowaffinity sulfonylurea binding sites reside on neuronal cell bodies in the brain. Brain Res. 745:1-9. https://doi.org/10.1016/S0006-8993(96)01006-2
  6. Eason J, Williams AL, Chawla B, Apsey C, Bohnsack BL. 2017. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth.Defects Res. 109:1212-1227. https://doi.org/10.1002/bdr2.1069
  7. Garcia GR, Noyes PD, Tanguay RL. 2016. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 161:11-21. https://doi.org/10.1016/j.pharmthera.2016.03.009
  8. Godoy R, Noble S, Yoon K, Anisman H, Ekker M. 2015. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae. J. Neurochem. 135:249-260. https://doi.org/10.1111/jnc.13214
  9. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1-36. https://doi.org/10.1242/dev.123.1.1
  10. Hay JV. 1990. Chemistry of sulfonylurea herbicides. Pestic. Sci. 29:247-261. https://doi.org/10.1002/ps.2780290303
  11. Hayes M, Gao X, Yu LX, Paria N, Henkelman RM, Wise CA, Ciruna B. 2014. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat. Commun. 5:4777. https://doi.org/10.1038/ncomms5777
  12. Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH. 2019. Trimethyltin chloride induces reactive oxygen speciesmediated apoptosis in retinal cells during zebrafish eye development. Sci. Total Environ. 653:36-44. https://doi.org/10.1016/j.scitotenv.2018.10.317
  13. Kruk J, Kubasik-Kladna K, Aboul-Enein HY. 2015. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev. Med. Chem. 16:241-257. https://doi.org/10.2174/1389557516666151120114605
  14. Kuk YI, Kim KH, Kwon OD, Lee DJ, Burgos NR, Jung S, Guh JO. 2004. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manag. Sci. 60:85-94. https://doi.org/10.1002/ps.786
  15. LaRossa RA and Schloss JV. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259:8753-8757. https://doi.org/10.1016/S0021-9258(17)47217-6
  16. Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF. 2017. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 171:40-48. https://doi.org/10.1016/j.chemosphere.2016.12.032
  17. Lieschke GJ and Currie PD. 2007. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8:353-367. https://doi.org/10.1038/nrg2091
  18. Matt N, Ghyselinck NB, Pellerin I, Dupe V. 2008. Impairing retinoic acid signalling in the neural crest cells is sufficient to alter entire eye morphogenesis. Dev. Biol. 320:140-148. https://doi.org/10.1016/j.ydbio.2008.04.039
  19. Morrica P, Barbato F, Giordano A, Seccia S, Ungaro F. 2000. Adsorption and desorption of imazosulfuron by soil. J. Agric. Food Chem. 48:6132-6137. https://doi.org/10.1021/jf000152d
  20. Morrica P, Giordano A, Seccia S, Ungaro F, Ventriglia M. 2001. Degradation of imazosulfuron in soil. Pest Manag. Sci. 57:360-365. https://doi.org/10.1002/ps.294
  21. Moura MAM, Oliveira R, Jonsson CM, Domingues I, Soares AMVM, Nogueira AJA. 2018. The sugarcane herbicide ametryn induces oxidative stress and developmental abnormalities in zebrafish embryos. Environ. Sci. Pollut. Res. Int. 25:13416-13425. https://doi.org/10.1007/s11356-017-9614-0
  22. Pickart MA and Klee EW. 2014. Zebrafish approaches enhance the translational research tackle box. Transl. Res. 163:65-78. https://doi.org/10.1016/j.trsl.2013.10.007
  23. Sawada F, Inoguchi T, Tsubouchi H, Sasaki S, Fujii M, Maeda Y, Morinaga H, Nomura M, Kobayashi K, Takayanagi R. 2008. Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic betacell line, MIN6. Metabolism 57:1038-1045. https://doi.org/10.1016/j.metabol.2008.01.038
  24. Sondhia S. 2008. Determination of imazosulfuron persistence in rice crop and soil. Environ. Monit. Assess. 137:205-211. https://doi.org/10.1007/s10661-007-9741-z
  25. Villeneuve D, Volz DC, Embry MR, Ankley GT, Belanger SE, Leonard M, Schirmer K, Tanguay R, Truong L, Wehmas L. 2014. Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development. Environ. Toxicol. Chem. 33:158-169. https://doi.org/10.1002/etc.2403
  26. Wang B, Kong D, Lu J, Zhou Q. 2015. Transformation of sulfonylurea herbicides in simulated drinking water treatment processes. Environ. Sci. Pollut.Res. Int. 22:3847-3855. https://doi.org/10.1007/s11356-014-3642-9