DOI QR코드

DOI QR Code

Sorption Characteristics of Strontium and Nickel on Mackinawite According to pH Variations in Alkaline Conditions

염기 환경에서 pH 변화에 따른 맥키나와이트 광물에 스트론튬과 니켈의 수착 특성

  • Received : 2019.12.05
  • Accepted : 2020.03.19
  • Published : 2020.03.30

Abstract

Strontium (90Sr) and nickel (59Ni) have been considered as key radionuclides in the safety assessment of radioactive waste disposal. Through various efforts to impede the migration of radioactive nuclides underground, it has been established that some minerals generated from the corrosion of the waste containers have a positive chemical interaction with these radionuclides. Among these minerals we selected mackinawite (FeS), an iron and sulfur compound, and performed a sorption experiment for the Sr and Ni in FeS under anoxic and alkaline conditions by reflecting deep underground environments. The effects of pH on sorption were likewise investigated in the pH range of 8 ~ 12. As a result, it was found that strontium failed to exhibit a good sorption capacity in a weak alkaline range, while nickel showed a noticeably higher sorption affinity over the entire experimental pH range. Moreover, we determined that as the pH increased in the solution, the distribution coefficients (Kd) were increased for both nuclides, which reflects when an alkalinity increses, the surface of the mineral charges much negatively by detaching the hydrogen or cations on the mineral surface. Thus, it can be concluded that the cationic nuclides of Sr and Ni can attach easily to the mineral under strong alkalinity.

스트론튬(90Sr)과 니켈(59Ni)은 처분안전성평가에서 중요하게 다루는 핵종들이다. 지하에서 방사성핵종의 이동을 저지하기 위한 다양한 시도가 이루어지고 있는데, 처분시스템에서 용기와 부식반응으로 생기는 광물들 중에 핵종들과 반응성이 뛰어난 광물들이 존재하는 것이 알려졌다. 이들 중에서 철-황화합광물인 맥키나와이트(FeS)를 선정하여 스트론튬, 니켈과 수착실험을 하였다. 심부지하에서 환원 알카리 환경을 고려하여, pH 8 ~ 12까지 조건에서 pH에 따른 수착영향을 살펴보았다. 실험결과, 스트론튬은 낮은 알카리영역에서 수착능이 저조하였지만, 니켈은 전 실험영역에서 높은 수착능을 보였다. 또, 두 핵종 모두 알카리 조건에서 pH가 증가할수록 수착량(Kd)이 증가하였는데, 이는 pH가 증가하면서 풍부해진 OH-이온이 광물표면에 수소나 양이온과 결합해 탈착하면서 광물표면에 전기음성도가 증가해 양이온인 스트론튬과 니켈을 전기적 인력으로 끌어당기기 때문으로 여겨진다.

Keywords

References

  1. J.K. Lee, S.Y. Lee, J.W. Kim, M.H. Baik, and T.J. Park, Nuclide behavior characteristics in underground disposal environments, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6547/2016 (2016).
  2. T.J. Park, J.H. Min, J.K. Lee, S.Y. Lee, and J.T. Jeong, "Understanding of uranium migration according to redox conditions with chalcocite", Proc. of KRWS 2014 Spring Conference, May 7-9, 2014, Pyungchang.
  3. C.K. Park, T.J. Park, S.Y. Lee, and J.K. Lee, "Sorption characteristics of iodide on chacocite and mackinawite under pH variations in alkaline conditions", Nuc. Eng. & Tech., 51, 1041 (2019). https://doi.org/10.1016/j.net.2019.01.014
  4. J. Morse and T. Arakaki, "Adsorption and coprecipitation of divalent metals with mackinawite", Geochim. Cosmochim. Acta, 57, 3635-3640 (1993). https://doi.org/10.1016/0016-7037(93)90145-M
  5. R.T. Wilkins and D.G. Beak, "Uptake of nikel by synthetic mackinawite", Chemical Geology, 462(6), 15-29 (2017). https://doi.org/10.1016/j.chemgeo.2017.04.023
  6. A.M. Elprince, "Effect of pH on the adsorption Cs by sediments", Water Res. Res., 14, 696 (1978). https://doi.org/10.1029/WR014i004p00696
  7. C.K. Park, Y.H. Cho, and P.S. Hahn, "Sorption reactions for metal ions onto domestic granites", J. Korea Solid wastes Eng. Soc., 14, 412-420 (1997).
  8. S. Dulnee, Sorption and interfacial reaction of Sn onto magnetite, goethite, and mackinawite, Ph.D dissertation, Dresden Univ. (2014).
  9. K. Kwon, K. Refson, and G. Sposito, "Transition metal incorporation into mackinawite", Am. Mineral. 100, 1509-1517 (2015). https://doi.org/10.2138/am-2015-5211CCBYNCND
  10. M. Wolthers, L. Charlet, P. Linde, D. Rickard, and C. Weijden, "Surface chemistry of disordered mackinawite", Geochimica et Cosmochimica Acta, 69, 3469 (2005). https://doi.org/10.1016/j.gca.2005.01.027
  11. J. Davis and D. Kent, "Surface complexation modeling in aqueous geochemistry", Rev. in Mineral., vol.23, 177-260 (1990).
  12. W. Stumm and J. Morgan, Aquatic Chemistry, 2nd ed. Chap.10. Wiley Interscience Pub., NY (1981).
  13. A.Fuller, S.Shaw, C.Peacock, D.Trivedi, and T. Burke, "EXAFS study of Sr sorption to illite,goethite, chlorite, and mixed sediments under hyperalkaline conditions", Langmuir, 32, 2937-2946 (2016). https://doi.org/10.1021/acs.langmuir.5b04633
  14. S. Wallace, S. Shaw, K. Morris, J. Small, and I. Burke, "Alteration of sediments by hyperalkaline K-rich cement leachate", Env.Sci.&Tech., 47, 3694-3700 (2013). https://doi.org/10.1021/es3051982
  15. B. Collins, D. Sheerman, and K. Ragnarsdottir, "The adsorption mechanism of $Sr^{+2}$ on the surface of goethite", Radiochim. Acta, 81, 201-206 (1998). https://doi.org/10.1524/ract.1998.81.4.201
  16. N. Sahai, S. Carrol, S. Roberts, and P. O'Day, "X-ray absorption spectroscopy of Sr(II) coordination", J. of Colloid & Inter. Sci., 222, 198-212 (2000). https://doi.org/10.1006/jcis.1999.6562
  17. S. Wallace, S. Shaw, K. Morris, J. Small, A. Fuller, and I. Burke, "Effects of groundwater pH and ionic strength on Sr sorption in aquifer sediment", Applied Geochem., 27,1482-1491 (2012). https://doi.org/10.1016/j.apgeochem.2012.04.007
  18. D. Evans, J. Alberts, and R. Clark, "Reversible ion exchange fixation of Cs-137 leading to mobilization from reservoir sediments", Geochimica et Cosmochimica Acta, 47, 1041-1049 (1983). https://doi.org/10.1016/0016-7037(83)90234-X