DOI QR코드

DOI QR Code

The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates

  • Farokhian, Ahmad (Mechanical Engineering group, Pardis College, Isfahan University of Technology)
  • 투고 : 2019.10.15
  • 심사 : 2020.01.27
  • 발행 : 2020.03.10

초록

Vibration analysis in nanocomposite plate with smart layer is studied in this article. The plate is reinforced by carbon nanotubes where the Mori-Tanaka law is utilized for obtaining the effective characteristic of structure assuming agglomeration effects. The nanocomposite plate is located in elastic medium which is simulated by spring element. The motion equations are derived based on first order shear deformation theory and Hamilton's principle. Utilizing Navier method, the frequency of the structure is calculated and the effects of applied voltage, volume percent and agglomeration of Carbon nanotubes, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with applying negative voltage, the frequency of structure is increased. In addition, the agglomeration of carbon nanotubes reduces the frequency of the nanocomposite plate.

키워드

참고문헌

  1. Akgoz, B. (2019), "Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions", Steel Compos. Struct., 33(1), 965-974. https://doi.org/10.12989/scs.2019.33.1.965.
  2. Bahmyari, E. and Khedmati, M.R. (2013), "Vibration analysis of nonhomogeneous moderately thick plates with point supports resting on Pasternak elastic foundation using element free Galerkin method", Eng. Anal. Bound. Elem., 37(10), 1212-1238. https://doi.org/10.1016/j.enganabound.2013.05.003.
  3. Bowles, J.E. (1988), Foundation analysis and design, Mc Graw Hill Inc..
  4. Chahar, R.S. and Kumar, R.B. (2019), "Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures", Steel. Compos. Struct., 31(4), 555-564. https://doi.org/10.12989/scs.2019.31.4.387.
  5. Chen, J., Li, P., Song, G. and Ren, Z. (2016), "Piezo-based wireless sensor network for early-age concrete strength monitoring", Optik, 127(5), 2983-2987. https://doi.org/10.1016/j.ijleo.2015.11.170.
  6. Chen, S.S., Liao, K.H. and Shi, J.Y. (2016), "A dimensionless parametric study for forced vibrations of foundation-soil systems", Comput. Geotech., 76, 184-193. https://doi.org/10.1016/j.compgeo.2016.03.012.
  7. Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59(2), 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X.
  8. Chow, S.T., Liew, K.M. and Lam, K.Y. (1992), "Transverse vibration of symmetrically laminated rectangular composite plates", Compos. Struct.,20, 213-226. https://doi.org/10.1016/0263-8223(92)90027-A.
  9. Dai, K.Y., Liu, G.R., Lim, M.K. and Chen, X.L. (2004), "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vib., 269, 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0.
  10. De Rosa, M.A. and Lippiello, M. (2009), "Free vibrations of simply supported double plate on two two models of elastic soils", Int. J. Num. Anal. Meth. Geomech. 33, 331-353. https://doi.org/10.1002/nag.717.
  11. Dutta, G., Singh V.K., Mahapatra, T.R. and Panda S.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Computat. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  12. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N. and Soares, C.M.M. (2010), "Analysis of plates on Pasternak foundations by radial basis functions", Comput. Mecch., 46, 791-803. https://doi.org/10.1007/s00466-010-0518-9.
  13. Ebrahimi. F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002.
  14. Hosseini-Hashemi, Sh., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34, 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
  15. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-peizoelasticity theories", Compos. Struct., 157, 174-186. 10.1016/j.compstruct.2016.08.032.
  16. Kumar, Y. and Lal, R. (2012), "Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation", Meccanica, 47, 893-915, https://doi.org/10.1007/s11012-011-9459-4.
  17. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for levy-plates on two-parameter foundation using green's functions", Eng. Struct., 22, 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3.
  18. Mantari, J.L., Granados, E.V. and Guedes Soares, C. (2014), "Vibrational analysis of advanced composite plates resting on elastic foundation", Compos. Part B-Eng., 66, 407-419. https://doi.org/10.1016/j.compositesb.2014.05.026.
  19. Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi A. and Adda Bedia E.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., 23(3), 317-330. https://doi.org/10.12989/scs.2017.23.3.317.
  20. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Anis Bousahla, A., Tounsi, A. and Mahmoud, S.R. (2019), Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  21. Mehar K., Mahapatra, T.R., Panda, S.K. and Katariya, P.V. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144, 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  22. Mehar K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7, 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  23. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  24. Reddy, J.N. (2003), "Mechanics of laminated composite plates and shells: theory and analysis", 2nd Ed., CRC Press.
  25. Sasmal, S., Ravivarman, N., Sindu, B.S. and Vignesh, K. (2017), "Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading", Compos. Part A - Appl. S., 100, 227-243. https://doi.org/10.1016/j.compositesa.2017.05.018.
  26. Secgin, A. and Sarigul, A.S. (2008), "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification", J. Sound Vib., 315, 197-211. https://doi.org/10.1016/j.jsv.2008.01.061.
  27. Shi, D.L. and Feng X.Q. (2004), "The Effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater-T. ASME, 126, 250-270, https://doi.org/10.1115/1.1751182.
  28. Shooshtari, A. and Razavi, S. (2015), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. https://doi.org/10.1016/j.mechrescom.2015.06.011.
  29. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda. S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conf. Series: Mat. Sci. Eng., 178 (1), 012026. https://doi.org/10.1088/1757-899X/178/1/012026
  30. Singh, V.K. and Panda, S.K. (2015a), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. DOI: https://doi.org/10.12989/sss.2015.16.5.853.
  31. Singh, V.K. and Panda, S.K. (2015b), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Cont., 23, 2078-2093. https://doi.org/10.1177/1077546315609988.
  32. Singh, V.K. and Panda, S.K. (2016), "Numerical investigation on nonlinear vibration behavior of laminated cylindrical panel embedded with PZT layers", Procedia Eng., 144, 660-667, https://doi.org/10.1016/j.proeng.2016.05.062.
  33. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
  34. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006.
  35. Ugurlu, B. (2016), "Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation", Eng. Anal. Bound. Elem., 62, 163-176, https://doi.org/10.1016/j.enganabound.2015.10.006.
  36. Whitney, J.M. (1987), "Structural analysis of laminated anisotropic plates", Technomic Publishing Company Inc, Pennsylvania, USA.