References
- Ansari, R., Rouhi, H. and Rajabiehfard, R.. (2012), "Free vibration analysis of single-walled carbon nanotubes using semi-analytical finite element", Int J Comput Meth Eng Sci Mech., 13,1-8. https://doi.org/10.1080/15502287.2012.660234.
- Ansari, R., Rouhi, H. and Sahmani, S. (2011),"Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics", Int J Mech Sci., 53, 786-792. https://doi.org/10.1016/j.ijmecsci.2011.06.010..
- Alibeigloo, A. and Shaban, M. (2013),"Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2.
- Ansari, R., Sahmani, S. and Rouhi, H. (2011), "Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions", Phys. Lett. A, 375 ,1255-1263. https://doi.org/10.1016/j.physleta.2011.01.046.
- Arash, B and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51, 303-313. https://doi.org/10.1007/978-3-319-01201-8_2.
- Arefi, M and Zenkour, A.M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater, Res, Express., 3, 115704. https://doi.org/10.1088/2053-1591/3/11/115704.
- Arefi, M. and Zenkour, A.M. (2017a), "Thermo-electro-mechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071.
- Arefi, M., Kiani, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezo magnetic face sheets resting on Pasternak's foundation via MCST", Sandw. Struct. Mater., https://doi.org/10.1177/1099636217734279.
- Arefi, M. and Zenkour, A.M. (2017c), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matter., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.
- Arefi, M. and Zenkour, A.M. (2017d), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6.
- Arefi, M. and Zenkour, A.M. (2019), "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., 21(8), 2751-2778. https://doi.org/10.1177/1099636217723186.
- Amiri, F., Millan, D., Shen, Y., Rabczuk, T. and Arroyo, M. (2014), "Phase-field modeling of fracture in linear thin shells", Theor. Appl. Fract. Mech., 69, 102-109., https://doi.org/10.1016/j.tafmec.2013.12.002
- Areias, P., Rabczuk, T. and Msekh, M.A. (2016), "Phase-field analysis of finite-strain plates and shells including element Subdivision", Comput. Method. Appl. M., 312, 322-235. http://dx.doi.org/10.1016/j.cma.2016.01.020.
- Baghani, M., MohammadSalehi, M. and Dabaghian, P.H. (2016), "Analytical couple-stress solution for size-dependent large-amplitude vibrations of FG tapered-nanobeams", Solids Struct., 13(1). http://dx.doi.org/10.1590/1679-78252175.
- Belkorissat, I., Ahmed Houari, M.S., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., 18, 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.
- Budarapu, P.R. Reinoso, J. and Paggi, M. (2017a), "Concurrently coupled solid shell-based adaptive multiscale method for fracture", Comput. Method. Appl. M., 319(1), 338-365. https://doi.org/10.1016/j.cma.2017.02.023.
- Budarapu, P.R. and Rabczuk, T. (2017b), "Multiscale methods for fracture: A review". J. Ind. Inst. Sci., 97(3), 339-376. https://doi.org/10.1007/s41745-017-0041-5.
- Budarapu, P.R., Gracie, R., Yang, S.W., Zhuang, X. and Rabczuk, T. (2014), "Efficient Coarse Graining in Multiscale Modeling of Fracture", Theor. Appl. Fract. Mech., 69, 126-143. https://doi.org/10.1016/j.tafmec.2013.12.004.
- Chen, W.Q., Ying, J. and Yang, Q.D. (2008), "Free vibrations of transversely isotropic cylinders and cylindrical shells", Pressure Vessel Technol., 120(4). https://doi.org/10.1115/1.2842338.
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101, 024305. https://doi.org/10.1063/1.2423140.
- Daneshmand, F., Rafiei, M., Mohebpour, S. and Heshmati, M. (2013), "Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory", Appl. Math. Model., 37, 7983-8003. https://doi.org/10.1016/j.apm.2013.01.052.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. ttps://doi.org/10.1063/1.332803.
- Gurtin, M.E. and Murdoch, A. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.
- Gurtin, M.E and Murdoch, A. (1978), "Surface stress in solids". Int. J. Solids Struct., 14, 431-440., .https://doi.org/10.1007/BF00261375
- Gurtin, M.E., Issmuller, W.E and Larche, J. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag., 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.
- Ghavanloo, E. and Fazelzadeh, A. (2013), "Nonlocal elasticity theory for radial vibration of nanoscale spherical shells", Mech. A/Solids, 41, 37-42., https://doi.org/10.1016/j.euromechsol.2013.02.003,
- Gholami, R., Darvizeh, A., Ansari, A. and Sadeghi, F. (2016), "Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory", Mech. -A/Solids., 58,76-88., https://doi.org/10.1016/j.euromechsol.2016.01.014.
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of kirchhoff plate", Comput. Mater. Continu., 59, 433-456. doi:10.32604/cmc.2019.06660.
- Hosseini Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607., https://doi.org/10.12989/scs.2018.26.5.607.
- Javvaji, B., Budarapu, P.R., Paggi, M., Zhuang, X. and Rabczuk, T. (2018), "Fracture Properties of Graphene-Coated Silicon for Photovoltaics", Adv. Theory. Simulation., 1(12), 1800097, https://doi.org/10.1002/adts.201800097.
- Koutsoumaris, C.C., et al. (2015), "Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes", AIP Publishing LLC., 3, 28-42., https://doi.org/10.1063/1.4938978.
- Lam, D., Yang, F., Chong, A., Wang, J and Tong, P. (2003) ,"Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51,1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, C., Liu, J.J., Cheng, M. and Fan, X.L. (2017), "Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces", Compos. Part B: Eng,, 116, 153-69., https://doi.org/10.1016/j.compositesb.2017.01.071.
- Moradi-Dastjerdi, R., Pourasghar, A. and Foroutan, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method". Compos. Mater., 48(15)., https://doi.org/10.1177/0021998313491617.
- Murmu, T., Adhikari, S and Wang, C.Y. (2011), "Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory". Physica E, 43, 1276-1280., https://doi.org/10.1016/j.physe.2011.02.017.
- Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Nguyen-Xuan, H., Bazilevs, Y and Rabczuk, T. (2017), "Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling", Comput. Method. Appl. M., 316, 1157-1178., http://dx.doi.org/10.1016/j.cma.2016.12.002.
- Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028.
- Pradhan, S.C and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett., 373, 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int J Eng Sci., 45, 288-307., https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Rabczuk, T., Gracie, R., Song, J.H. and Belytschko, T. (2010), "Immersed particle method for fluid-structure interaction", Numer, Method Eng., 81, 48-71. 10.1002/nme.2670, 2010.
- Rabczuk, T., Areias, P.M.A. and Belytschko, T. (2007), "A meshfree thin shell method for non-linear dynamic fracture", Int. J. Numer. Meth. Eng., 72, 524-548. https://doi.org/10.1002/nme.2013.
- Shojaeefard, M.H., Mahinzare, M., Safarpour, H., Ghadiri, M. and Googarchin, H. (2018), "Free vibration of an ultra-fast-rotating induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition", Appl. Math. Model., 61, 255-279. https://doi.org/10.1016/j.apm.2018.04.015.
- Shaat, M and Abdelkefi, A. (2017), "New insights on the applicability of Eringen's nonlocal theory", Int J Mech Sci., 121, 67-75., https://doi.org/10.1016/j.ijmecsci.2016.12.013.
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijmecsci.2016.12.013.
- Safaei, B., Moradi-Dastjerdi, R., Qin, Z.H. and Chu, F. (2018), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 18, 148-176. https://doi.org/10.1016/j.compositesb.2018.10.049.
- Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimen-sional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015.
- Soleimani, I., Tadi Beni, Y. and Dehkordi, M.B. (2018), "Finite element vibration analysis of nanoshell based on new cylindrical shell element", Struct. Eng. Mech., 65(1), 33-41. https://doi.org/10.12989/sem.2018.65.1.033.
- Tadi Beni, Y. (2016b), "Size-dependent electro mechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mat. Syst. Str., 27, 2199-2215. https://doi.org/10.1177/1045389X15624798.
- Tadi Beni, Y. (2016c), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011.
- Tadi Beni, Y., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-106. https://doi.org/10.1016/j.compstruct.2014.09.065.
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124-130. https://doi.org/10.1063/1.2141648 .
- Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular micro-plates based on the modified couple stress theory", Int. J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008.
- Wang, K., Wang, B. and Kitamura, T. (2015), "A review on the application of modified continuum models in modeling and simulation of nanostructures", Acta Mech. Sinica, 32, 83-100. https://doi.org/10.1007/s10409-015-0508-4.
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos Part B-.Eng., 39(2), 292-303., https://doi.org/10.1016/j.compositesb.2007.01.005.
- Yildirm V. (1999), "A numerical study on the free vibration of symmetric cross-ply laminated cylindrical helical springs", Appl. Mech., 66, 1040-1043. http://dx.doi:10.1115/1.2791780.
- Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Math.. Phys. Eng. Sci., https://doi.org/10.1098/rspa.2012.0214
- Zhu, C.S., Fang, X.Q., Liu, J.X and Li, H.Y. (2017), "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Mech. - A/Solids, 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08. 001.
- Zeighampour, H. and Tadi Beni, Y. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Phys. E, 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011.
- Zhang, Y., Wang, C. and Tan, V. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Zeighampour, H. and Tadi Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85, 539-553. https://doi.org/10.1007/s00419-014-0929-8.
- Zenkour, A.M. (2013), "Bending of FGM plates by a simplified four-unknown shear and normal deformations theory", Int. J. Appl. Mech., 5, 1-15,. https://doi.org/10.1142/S1758825113500208.
- Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Model., 37, 9041-9051., https://doi.org/10.1016/j.apm.2013.04.022.
Cited by
- Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355