DOI QR코드

DOI QR Code

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Hebali, Habib (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2019.11.10
  • Accepted : 2020.02.06
  • Published : 2020.03.10

Abstract

In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

Keywords

References

  1. Abdou, M.A., Othman, M.I.A., Tantawi, R.S. and Mansour, N.T. (2019), "Exact solutions of generalized thermoelastic medium with double porosity under L-S theory", Indian J. Phys., doi:10.1007/s12648-019-01505-8.
  2. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  3. Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. DOI: https://doi.org/10.12989/anr.2018.6.3.219
  4. Akbas, S.D. (2019a). "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  5. Akbas, S.D. (2019b). "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  6. Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49, 1268-1280.https://doi.org/10.1016/j.ijengsci.2010.12.009
  7. Akgoz, B. and Civalek, O. (2012), "Free vibration analysis for single -layered graphene sheets in an elastic matrix via modified couple stress theory", Mater. Des., 42, 164-171.https://doi.org/10.1016/j.matdes.2012.06.002.
  8. Akgoz, B. and Civalek, O. (2013a), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004.
  9. Akgoz, B. and Civalek, O. (2013b), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mech., 224, 2185-2201. DOI 10.1007/s00707-013-0883-5.
  10. Akgoz, B. and Civalek, O. (2013c), "Free vibration analysis of axially functionally graded tapered Bernoulli - Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  11. Anjomshoa, A., Shahidi, A.R., Hassani B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model., 38, 5934-5955.https://doi.org/10.1016/j.apm.2014.03.036.
  12. Ansari, R. and Sahmani, S. (2013), "Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations", Appl. Math. Model., 37, 7338-7351. https://doi.org/10.1016/j.apm.2013.03.004.
  13. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375
  14. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  15. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arabian J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2
  16. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Design, 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289
  17. Barati, M.R. and Shahverdi, H. (2019). "Finite element forced vibration analysis of refined shear deformable nanocompositegraphene platelet-reinforced beams", J. Brazilian Soc. Mech. Sci. Eng., 42(1). doi:10.1007/s40430-019-2118-8.
  18. Basua, S. and Bhattacharyya, P. (2012), "Recent developments on graphene and graphene oxide based solid state gas sensors", Sens. Actuat. B, 173, 1-21. https://doi.org/10.1016/j.snb.2012.07.092
  19. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213
  20. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  21. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/AAS.2019.6.1.001
  22. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  23. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018a), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  24. Bensattalah, T., Zidour, M. and Hassaine Daouadji, T. (2018b), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/AMR.2018.7.3.163
  25. Bensattalah, T., Zidour, M., HassaineDaouadji, T. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  26. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, ,2(1), 57-69. DOI: https://doi.org/10.12989/acd.2017.2.1.057.
  27. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.269.
  28. Ebrahimi, F. and Barati, M.R. (2017), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Waves Random Complex Media., 28(2), 326-342. doi:10.1080/17455030.2017.1346331.
  29. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science., 232(11), 2067-2078. doi:10.1177/0954406217713518.
  30. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. doi:10.1016/j.compstruct.2016.07.013.
  31. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. doi:10.1016/j.tws.2019.106488.
  32. Eltaher, M.A., Almalki, T.A. and Ahmed, K.I.E. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  33. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  34. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40,141. https://doi.org/10.1007/s40430-018-1065-0.
  35. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration Analysis of Material Size-Dependent CNTs Using Energy Equivalent Model", J. Appl. Comput. Mech., 4(2), 75-86. doi:10.22055/JACM.2017.22579.1136.
  36. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  37. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity, solutions of screw dislocation, surface waves", J. Appl. Phys., 54, 4703-4710. DOI:10.1063/1.332803.
  38. Eringen, A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44, 141-147.https://doi.org/10.1016/j.ijengsci.2005.11.002.
  39. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  40. Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. DOI: https://doi.org/10.12989/cac.2019.23.5.303
  41. Farajpour, A., Dehghany, M. and Shahidi, A.R. (2013b), "Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment", Compos B, 50, 333-343. https://doi.org/10.1016/j.compositesb.2013.02.026.
  42. Farajpour, A., Solghar, A.A. and Shahidi, A. (2013a), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Phys. E, 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028.
  43. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", The European Physical J. Plus., 135(1). doi:10.1140/epjp/s13360-019-00042-x..
  44. GhorbanpourArani, A., Amir, S., Dashti, P. and Yousefi, M. (2014), "Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect", Comput. Mater. Sci., 86, 144-154. https://doi.org/10.1016/j.commatsci.2014.01.047.
  45. Golmakani, M.E. and Rezatalab, J. (2015), "Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory", Compos. Struct., 119, 238-250. https://doi.org/10.1016/j.compstruct.2014.08.037.
  46. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  47. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  48. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  49. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  50. Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106-227. https://doi.org/10.1016/j.tws.2019.106227.
  51. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. DOI: https://doi.org/10.12989/anr.2019.7.1.051.
  52. Karlicic, D., Cajic, M., Kozic, P. and Pavlovic, I. (2015), "Temperature effect s on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium", Compos. Struct., 131, 672-681. https://doi.org/10.1016/j.compstruct.2015.05.058.
  53. Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. with Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.
  54. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlinmicroplates based on the modified couple stress theory", J. Sound Vib., 331, 94-106. https://doi.org/10.1016/j.jsv.2011.08.020.
  55. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-207. https://doi.org/10.12989/scs.2018.28.2.195.
  56. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. doi:10.1016/j.compstruct.2016.05.023.
  57. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. doi:10.1016/j.ijmecsci.2017.06.039.
  58. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Design, 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  59. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  60. Li, F., Li, J., Feng, Y., Yang, L. and Du, Z. (2011), "Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid", Sens. Actuat. B, 157, 110-114. DOI: 10.1016/j.snb.2011.03.033.
  61. Li, D.H., Guo, Q.R., Xu, D. and Yang, X. (2017), "Three-dimensional micromechanical analysis models of fiber reinforced composite plates with damage", Comput. Struct., 191, 100-114. https://doi.org/10.1016/j.compstruc.2017.06.005.
  62. Lim, C.W., Li, C. and Yu, J.L. (2010), "Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach", Acta Mech. Sinica, 26, 755-765. doi:10.1007/s10409-010-0374-z.
  63. Liu, J., Chen, L., Xie, F., Fan, X. and Li, C. (2016), "On bending, buckling and vibration of graphenenanosheets based on the nonlocal theory", Smart Struct. Syst., 17(2), 257-274. https://doi.org/10.12989/eas.2016.17.2.257.
  64. Majeed, W.I. and Sadiq, I.A. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Ser.: Mater. Sci. Eng., 454, 012006. https://doi.org/10.1088/1757-899X/454/1/012006.
  65. Mirjavadi, S.S., Forsat, M. and Badnava, S. (2019), "Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models", Biomech Model Mechanobiol, (In press). doi:10.1007/s10237-019-01265-8
  66. Moghadam, A., Estekanchi, H.E. and Yekrangnia, M. (2018), "Evaluation of PR steel frame connection with torsional plate and its optimal placement", Sci. Iran., 25(3), 1025-1038. DOI: 10.24200/SCI.2017.4196
  67. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-450. https://doi.org/10.12989/sem.2019.70.6.737.
  68. Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos. B, 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060.
  69. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Design, 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  70. Nebab, M., AitAtmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  71. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669.DOI: 10.1126/science.1102896
  72. Othman, M.I.A., Abouelregal, A.E. and Said, S.M. (2019), "The effect of variable thermal conductivity on an infinite fiber-reinforced thick plate under initial stress", J. Mech. Mater. Struct., 14(2), 277-293. doi:10.2140/jomms.2019.14.277.
  73. Panjehpour, M., Woo, E., Loh, K. and Deepak, TJ. (2018), "Structural insulated panels: State-of-the-art", Trends in civil Engineering and its architecture, 3(1) 336-340. 10.32474/TCEIA.2018.03.000151
  74. Pantelic, R.S., Meyer, J.C., Kaiser, U. and Stahlberg, H. (2012), "The application of graphene as a sample support in transmission electron microscopy", Solid State Commun., 152, 1375-1382. https://doi.org/10.1016/j.ssc.2012.04.038
  75. Pascon, J.P. (2018), "Large deformation analysis of functionally graded visco-hyperelastic materials", Comput. Struct., 206, 90-108. https://doi.org/10.1016/j.compstruc.2018.06.001.
  76. Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single -layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001
  77. Pradhan, S.C. and Murmu, T. (2010), "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Phys. E, 42, 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053.
  78. Radic, N., Jeremic, D., Trifkovic, S. and Milutinovic, M. (2014), "Buckling analysis of double -orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory", Compos. B, 61, 162-171. https://doi.org/10.1016/j.compositesb.2014.01.042.
  79. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  80. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solid., 59, 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  81. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design, 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  82. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  83. Sakhaee-Pour, A., Ahmadian, M.T. and Vafai, A. (2008), "Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors", Solid State Commun., 145, 168-172. https://doi.org/10.1016/j.ssc.2007.10.032.
  84. Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38, 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003.
  85. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  86. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173.
  87. Sharma, J.N., Chand, R. and Othman, M.I.A. (2009), "On the propagation of Lamb waves in viscothermoelastic plates under fluid loadings", Int. J. Eng. Sci., 47(3), 391- 404. doi:10.1016/j.ijengsci.2008.10.008.
  88. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Engineering, 2(4), 228. https://doi.org/10.4236/eng.2010.24033
  89. Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517.
  90. Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mcanique, 345, 158-168. https://doi.org/10.1016/j.crme.2016.12.002.
  91. Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z. and Zhang, D. (2012), "Reinforcement with graphenenano- sheets in aluminum matrix composites", Scripta Mater., 66, 594-597.https://doi.org/10.1016/j.scriptamat.2012.01.012.
  92. Xu, Y.M., Shen, H.S. and Zhang, C.L. (2013), "Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments", Compos. Struct., 98, 294-302. https://doi.org/10.1016/j.compstruct.2012.10.041.
  93. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  94. Yuksela, Y.Z., and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mechanics., 50(2), 375-380. DOI: 10.22059/jcamech.2019.291967.448.
  95. Yuksela, Y.Z., and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci. (IJEAS)., 10(3), 176-189. http://dx.doi.org/10.24107/ijeas.456755.
  96. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309.
  97. Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2016) "Buckling analysis of graphene sheets embedded in an elastic medium based on the kp-Ritz method and non-local elasticity theory", Eng. Anal. Bound. Elem., 70, 31-39.https://doi.org/10.1016/j.enganabound.2016.05.009.

Cited by

  1. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  2. A Levy solution for bending, buckling, and vibration of Mindlin micro plates with a modified couple stress theory vol.2, pp.12, 2020, https://doi.org/10.1007/s42452-020-03939-w
  3. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  4. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2020, https://doi.org/10.1155/2021/9983024
  5. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
  6. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  7. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  8. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  9. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2020, https://doi.org/10.12989/csm.2021.10.1.061
  10. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  11. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.055
  12. Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355
  13. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  14. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593