Acknowledgement
The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq, for their support in the present work.
References
- Abualnour, M., et al. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
- Addou, F.Y., et al. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4),347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
- Alimirzaei, S., et al. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/scs.2019.71.5.485.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
- Attia, A., et al. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/scs.2018.65.4.453.
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Phys. E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Bakhadda, B., et al. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Bateni, M., Kiani, Y. and Eslami, M.R. (2013), "A comprehensive study on stability of FGM plates", Int. J. Mech. Sci., 75, 134-144. https://doi.org/10.1016/j.ijmecsci.2013.05.014.
- Beldjelili, Y., et al. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Berghouti, H., et al. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
- Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bouiadjra, R. B. and Sid Ahmed Houari, M. (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therm. Stress., 38(6), 630-650. https://doi.org/10.1080/01495739.2015.1015900.
- Boukhlif, Z., et al. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
- Boulefrakh et al. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Bounouara, F., et al. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
- Bourada, F., et al. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Boutaleb, S., et al. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res,, 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
- Chaabane, L.A., et al. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193.
- Draiche, K., et al. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Ebrahimi, F. and Barati, M.R. (2015), "A Nonlocal Higher-Order Shear Deformation Beam Theory for Vibration Analysis of Size-Dependent Functionally Graded Nanobeams", Arab. J. Sci. Eng., 1-12. https://doi.org/10.1007/s13369-015-1930-4.
- El-Haina, F., et al. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/CSM.2019.8.3.247
- Hamza-Cherif, R., et al. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res,, 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://dx.doi.org/10.12989/scs.2018.28.1.013.
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 39. http://dx.doi.org/10.12989/scs.2013.15.4.399.
- Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
- Mahmoudi, A., et al. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Menasria, A., et al. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. http://dx.doi.org/10.12989/scs.2017.25.2.157.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams," Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
- Mokhtar, Y., et al. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
- Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627.
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mat. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. B, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
- Oktem, A.S., Mantari, J.L. and Soares, C.G. (2012), "Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory", Eur. J. Mech. A/Solid., 36, 163-172. https://doi.org/10.1016/j.euromechsol.2012.03.002.
- Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound. Vib., 325(1), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043.
- Semmah, A., et al. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
- Taj, M.G., Chakrabarti, A. and Sheikh, A.H. (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 37(18), 8484-8494. https://doi.org/10.1016/j.apm.2013.03.058.
- Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T. and Nguyen-Xuan, H. (2014), "Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech. A-Solid., 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001.
- Tlidji, Y., et al. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
- Youcef, D.O., et al. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
- Zarga, D., et al. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
Cited by
- Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.545
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307