DOI QR코드

DOI QR Code

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang (School of Architecture, Tianjin University) ;
  • Liu, Haiyan (College of Sciences, Hebei Agricultural University) ;
  • Ren, Lijian (School of Architecture, Tianjin University) ;
  • Yun, Yingxia (School of Architecture, Tianjin University) ;
  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • Received : 2019.09.27
  • Accepted : 2020.01.12
  • Published : 2020.04.10

Abstract

The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Keywords

Acknowledgement

The research described in this paper, Founded within the project No. A201901046 and supported by "the talent training project of Hebei province".

References

  1. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  2. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci.,16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  3. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  4. Rao, M.N., Guruswamy, P. and Sampath Kumaran, K.S. (1977), "Finite element analysis of thick annular and sector plates", Nucl. Eng. Des., 41(2), 247-255. https://doi.org/10.1016/0029-5493(77)90113-3.
  5. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  6. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  7. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  8. Benson, P.R. and Hinton, E. (1976), "A thick finite strip solution for static, free vibration and stability problems", Int. J. Numer. Method. Eng., 10(3), 665-678. https://doi.org/10.1002/nme.1620100314.
  9. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.
  10. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  11. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  12. Cheung, M.S. and Chan, M.Y.T. (1981), "Static and dynamic analysis of thin and thick sectorial plates by the finite strip method", Comput. Struct., 14(1-2), 79-88. https://doi.org/10.1016/0045-7949(81)90086-9.
  13. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  14. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  15. Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2012), 62, "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003.
  16. Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65, 2300-2313.https://doi.org/10.1016/j.compscitech.2005.04.021.
  17. Guruswamy, P. and Yang, T.Y. (1979), "A sector finite element for dynamic analysis of thick plates, J. Sound Vib., 62(4), (1979) 505-516. https://doi.org/10.1016/0022-460X(79)90459-0.
  18. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  19. Houmat, A. (2001), "A sector Fourier p-element applied to free vibration analysis of sectorial plates", J. Sound Vib., 243(2), 269-282. https://doi.org/10.1006/jsvi.2000.3410.
  20. Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X.
  21. Kitipornchai, S., Chen, D., Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  22. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
  23. Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. T. ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735.
  24. Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2.
  25. Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623.
  26. Liu, R., Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Phys. Chemistry Chemical Phys., 7. https://doi.org/10.1039/C4CP05495D.
  27. Marin, M. and Craciun E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
  28. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  29. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 32(2), 219-232.
  30. Marin, M. (2010), "A domain of influence theorem for microstretch elastic materials, Nonlinear Anal. Real World Appl., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005.
  31. Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518. https://doi.org/10.1177/107754639800400501.
  32. Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies, Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0.
  33. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
  34. McGee, O.G., Huang, C.S. and Leissa, A.W. (1995), "Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges", Int. J. Mech. Sci., 37(5), 537-566. https://doi.org/10.1016/0020-7403(94)00050-T.
  35. Mizusawa, T. (1991), "Vibration of thick annular sector plates using semi-analytical methods", J. Sound Vib., 150(2), 245-259. https://doi.org/10.1016/0022-460X(91)90619-U.
  36. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.
  37. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube" Steel Compos. Struct., 22(2). https://doi.org/10.12989/scs.2016.22.2.277.
  38. Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1.
  39. Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1.
  40. Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003.
  41. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  42. Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
  43. Ramaiah, G.K. and Vijayakumar, K. (1974), "Natural frequencies of circumferentially truncated sector plates with simply supported straight edges", J. Sound Vib., 34(1), 53-61. https://doi.org/10.1016/S0022-460X(74)80354-8.
  44. Ramakris, R. and Kunukkas, V.X. (1973), "Free vibration of annular sector plates", J. Sound Vib., 30(1), 127-129. https://doi.org/10.1016/0022-460X(83)90546-1.
  45. Reddy J.N. (2013), "An Introduction to Continuum Mechanics", Second Edition, Cambridge University Press.
  46. Seok, J.W. and Tiersten, H.F. (2004), "Free vibrations of annular sector cantilever plates part 1:out-of-plane motion", J. Sound Vib., 271(3-5), 757-772. https://doi.org/10.1016/S0022-460X(03)00414-0.
  47. Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.
  48. Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.
  49. Srinivasan, R.S. and Thiruvenkatachari, V. (1983), "Free vibration of annular sector plates by an integral equation technique", J. Sound Vib., 89(3), 425-432. https://doi.org/10.1016/0022-460X(83)90546-1
  50. Srinivasan, R.S. and Thiruvenkatachari, V. (1986), "Free vibration analysis of laminated annular sector plates", J. Sound Vib., 109(1), 89-96. https://doi.org/10.1016/0022-460X(83)90546-1.
  51. Swaminadham, M., Danielski, J. and Mahrenholtz, O. (1984), "Free vibration analysis of annular sector plates by holographic experiments", J. Sound Vib., 95(3), 333-340. https://doi.org/10.1016/0022-460X(83)90546-1.
  52. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel and Composite Structures, An Int'l Journal, 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  53. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel and Composite Structures, An Int'l Journal, 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
  54. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
  55. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  56. Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  57. Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  58. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  59. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel and Composite Structures, An Int'l Journal, 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  60. Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), "Transverse vibration of thick annular sector plates", J. of Eng. Mech. ASCE, 119(8), 1579-1599. https://doi.org/10.1061/(ASCE)07339399(1993)119:8(1579).
  61. Xu, W., Wang, L., Jiang, J. (2016), "Strain Gradient Finite Element Analysis on the Vibration of Double-Layered Graphene Sheets", International Journal of Computational Methods, 13(3). https://doi.org/10.1142/S0219876216500110.
  62. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
  63. Zhang, Y., Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", Journal of Applied Physics, 124(13), 10.1063/1.5047584. https://doi.org/10.1063/1.5047584.
  64. Zhou, D., Lo, S.H. and Cheung, Y.K. (2009), "3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method", J.Sound Vib., 320(1-2), 421-437. https://doi.org/10.1016/j.jsv.2008.08.001.
  65. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.

Cited by

  1. Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601