References
- Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://dx.doi.org/10.12989/scs.2015.19.3.679.
- Bui, T.Q., Nguyen, N.T., Van Lich, L., Nguyen, M.N. and Truong, T.T. (2018), "Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods", Theor. Appl. Fract. Mech., 96, 642-657. https://doi.org/10.1016/j.tafmec.2017.10.005.
- Celigoj, C.C. (2001), "An improved 'assumed enhanced displacement gradient'ring-element for finite deformation axisymmetric and torsional problems", Int. J. Numer. Method. Eng., 50(4), 899-918. https://doi.org/10.1002/1097-0207(20010210)50:4<899::AID-NME58>3.0.CO;2-Y.
- Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Chen, J.S., Pan, C. and Wu, C.T. (1997), "Large deformation analysis of rubber based on a reproducing kernel particle method", Comput. Mech., 19(3), 211-227. https://doi.org/10.1007/s004660050170.
- Chu, F., He, J., Wang, L. and Zhong, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. with Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
- Feng, C., Kitipornchai, S. and Yang, J. (2017). "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
- Ferezghi, Y.S., Sohrabi, M.R. and MosaviNezhad, S.M. (2018), "Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method", Struct. Eng. Mech., 67(6), 659-669. https://doi.org/10.12989/sem.2018.67.6.659.
- Ghayoumizadeh, H., Shahabian, F. and Hosseini, S.M. (2013), "Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations (LIEs)", Eng. Anal. Bound. Elem., 37(11), 1524-1531. https://doi.org/10.1016/j.enganabound.2013.08.011.
- Gu, Y., Wang, Q.X. and Lam, K.Y. (2007), "A meshless local Kriging method for large deformation analyses", Comput. Method. Appl. M., 196(9-12), 1673-1684. https://doi.org/10.1016/j.cma.2006.09.017.
- Gupta, N. (2007), "A functionally graded syntactic foam material for high energy absorption under compression", Mater. Lett., 61(4-5), 979-982. https://doi.org/10.1016/j.matlet.2006.06.033.
- Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double-walled carbon nanotube", Struct. Eng. Mech., 54(5), 987-998. https://dx.doi.org/10.12989/sem.2015.54.5.987.
- Hasselman, D.P.H. and Youngblood, G.E. (1978), "Enhanced thermal stress resistance of structural ceramics with thermal conductivity gradient", J. Am. Ceramic Soc., 61(1-2), 49-52. https://doi.org/10.1111/j.1151-2916.1978.tb09228.x.
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255.
- Hosseini, S. M., Sladek, J. and Sladek, V. (2015). "Two dimensional analysis of coupled non-Fick diffusion-elastodynamics problems in functionally graded materials using meshless local Petrov-Galerkin (MLPG) method", Appl. Math. Comput., 268, 937-946. https://doi.org/10.1016/j.amc.2015.07.009.
- Kawasaki, A. and Watanabe, R. (2002). "Thermal fracture behavior of metal/ceramic functionally graded materials", Eng. Fract. Mech., 69(14-16), 1713-1728. https://doi.org/10.1016/S0013-7944(02)00054-1.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kou, K.P. and Yang, Y. (2019), "A meshfree boundary-domain integral equation method for free vibration analysis of the functionally graded beams with open edged cracks", Compos. Part B: Eng., 156, 303-309. https://doi.org/10.1016/j.compositesb.2018.08.089.
- Krahulec, S., Sladek, J., Sladek, V. and Hon, Y.C. (2016), "Meshless analyses for time-fractional heat diffusion in functionally graded materials", Eng. Anal. with Bound. Elem., 62, 57-64. https://doi.org/10.1016/j.enganabound.2015.09.008.
- Lee, W.Y., Stinton, D.P., Berndt, C.C., Erdogan, F., Lee, Y.D. and Mutasim, Z. (1996), "Concept of functionally graded materials for advanced thermal barrier coating applications", J. Am. Ceramic Soc., 79(12), 3003-3012. https://doi.org/10.1111/j.1151-2916.1996.tb08070.x
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Buckling analysis of CNT reinforced functionally graded laminated composite plates", Compos. Struct., 152, 62-73. https://doi.org/10.1016/j.compstruct.2016.05.047.
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2017), "Meshless modeling of geometrically nonlinear behavior of CNT-reinforced functionally graded composite laminated plates", Appl. Math. Comput., 295, 24-46. https://doi.org/10.1016/j.amc.2016.09.017.
- Li, C. and Weng, G.J. (2002), "Antiplane crack problem in functionally graded piezoelectric materials", J. Appl. Mech., 69(4), 481-488. https://doi.org/10.1115/1.1467091.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018). "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
- Lin, J., Li, J., Guan, Y., Zhao, G., Naceur, H. and Coutellier, D. (2018), "Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method", Compos. Struct., 189, 239-246. https://doi.org/10.1016/j.compstruct.2018.01.063.
- Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
- Liu, Z.S., Swaddiwudhipong, S. and Koh, C.G. (2002), "Stress wave propagation in 1-D and 2-D media using smooth particle hydrodynamics method", Struct. Eng. Mech., 14(4), 455-472. https://doi.org/10.12989/sem.2002.14.4.455.
- Mirzaei, M. and Kiani, Y. (2017). "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation", Compos. Struct., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057.
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
- Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method. Appl. M., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
- Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H. and Lee, J. (2018), "Geometrically nonlinear analysis of functionally graded material plates using an improved moving Kriging meshfree method based on a refined plate theory", Compos. Struct., 193, 268-280. https://doi.org/10.1016/j.compstruct.2018.03.036.
- Ocylok, S., Weisheit, A. and Kelbassa, I. (2010), "Functionally graded multi-layers by laser cladding for increased wear and corrosion protection", Phys. Procedia, 5, 359-367. https://doi.org/10.1016/j.phpro.2010.08.157.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2015a), "A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping", Acta Mechanica, 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2.
- Rad, M.H.G., Shahabian, F. and Hosseini, S. M. (2015b), "Large deformation hyper-Elastic modeling for nonlinear dynamic analysis of two dimensional functionally graded domains using the meshless local Petrov-Galerkin (MLPG) method", CMES: Comput. Model. Eng. Sci., 108(3), 135-157. https://doi.org/10.3970/cmes.2015.108.135.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2015c), "Geometrically nonlinear elastodynamic analysis of hyper-elastic neo-Hooken FG cylinder subjected to shock loading using MLPG method", Eng. Anal. with Bound. Eelem., 50, 83-96. https://doi.org/10.1016/j.enganabound.2014.08.002.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2019), "Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method", Steel Compos. Struct., 32(3), 293-304. https://doi.org/10.12989/scs.2019.32.3.293.
- Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. OUP Oxford, Texas, USA.
- Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082
- Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng.: A, 362(1-2), 61-80. https://doi.org/10.1016/S0921-5093(03)00579-3.
- Shi, Z.A. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever beam under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5.
- Sladek, J., Sladek, V., Stanak, P., Zhang, C. and Wunsche, M. (2013), "Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method", Eng. Struct., 47, 81-89. https://doi.org/10.1016/j.engstruct.2012.02.034.
- Sladek, V., Sladek, J., Tanaka, M. and Zhang, C. (2005). "Transient heat conduction in anisotropic and functionally graded media by local integral equations", Eng. Anal. with Bound. Elem., 29(11), 1047-1065. https://doi.org/10.1016/j.enganabound.2005.05.011.
- Soltanimaleki, A., Foroutan, M. and Alihemmati, J. (2016), "Free vibration analysis of functionally graded fiber reinforced cylindrical panels by a three dimensional mesh-free model", J. Vib. Control, 22(19), 4087-4098. https://doi.org/10.1177/1077546315570717.
- Thai, C.H., Do, V.N. and Nguyen-Xuan, H. (2016), "An improved Moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates", Eng. Anal. with Bound. Elem., 64, 122-136. https://doi.org/10.1016/j.enganabound.2015.12.003.
- Thai, C.H., Ferreira, A.J.M. and Phung-Van, P. (2019b), "Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory". Compos. Part B: Eng., 169, 174-188. https://doi.org/10.1016/j.compositesb.2019.02.048.
- Thai, C.H., Ferreira, A.J.M., Rabczuk, T. and Nguyen-Xuan, H. (2018b), "A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis". Eng. Anal. Bound. Elem., 92, 136-155. https://doi.org/10.1016/j.enganabound.2017.10.018.
- Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019a), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation". Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100.
- Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2019c), "A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory". Compos. Struct., 111695. https://doi.org/10.1016/j.compstruct.2019.111695.
- Thai, C.H., Ferreira, A.J.M., Wahab, M.A. and Nguyen-Xuan, H. (2018a), "A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates". Acta Mechanica, 229(7), 2997-3023. https://doi.org/10.1007/s00707-018-2156-9.
- Tutuncu, N. and Ozturk, M. (2001), "Exact solutions for stresses in functionally graded pressure vessels", Compos. Part B: Eng., 32(8), 683-686. https://doi.org/10.1016/S1359-8368(01)00041-5.
- Vaghefi, R., Hematiyan, M.R. and Nayebi, A. (2016), "Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method", Eng. Anal. with Bound. Elem., 71, 34-49. https://doi.org/10.1016/j.enganabound.2016.07.001.
- Verma, D., Gope, P.C., Shandilya, A. and Gupta, A. (2014), "Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: A review", Transact. Indian Inst. Metals, 67(6), 803-816. https://doi.org/10.1007/s12666-014-0408-5.
- Wang, H. and Qin, Q.H. (2008), "Meshless approach for thermo-mechanical analysis of functionally graded materials", Eng. Anal. with Bound. Elem., 32(9), 704-712. https://doi.org/10.1016/j.enganabound.2007.11.001.
- Wu, C. P. and Liu, Y. C. (2016). "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
- Xu, Y., Li, Z. and Guo, K. (2018), "Active vibration robust control for FGM beams with piezoelectric layers", Struct. Eng. Mech., 67(1), 33-43. https://doi.org/10.12989/sem.2018.67.1.033.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W. and Zhang, W. (2019), "Functionally graded materials: An overview of stability, buckling, and free vibration analysis", Adv. Mater. Sci. Eng., 2019. https://doi.org/10.1155/2019/1354150.
- Zhu, P. and Liew, K.M. (2011), "Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method", Compos. Struct., 93(11), 2925-2944. https://doi.org/10.1016/j.compstruct.2011.05.011.
- Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method for Solid and Structural Mechanics, Elsevier, United Kingdom.
Cited by
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697