DOI QR코드

DOI QR Code

An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations

  • 투고 : 2019.07.30
  • 심사 : 2020.03.05
  • 발행 : 2020.04.10

초록

In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion equations is derived by using Hamilton's principle. The finite element method (FEM) is adopted to develop a general solution procedure. The moving mass is considered on the top surface of the beam instead of supposing it on the mid-plane. In order to consider the Coriolis, centrifugal accelerations and the friction force, the contact force method is used. Moreover, the effects of boundary conditions, the moving mass velocity and various material distributions are studied. For verification of the present results, a comparative fundamental frequency analysis of an FGM beam is conducted and the dynamic transverse displacements of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by a moving mass can be significant for the scientific and engineering community in the area of FGM structures.

키워드

참고문헌

  1. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  2. Bathe, K. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ, USA.
  3. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  4. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  5. Burlayenko, V., Altenbach, H., Sadowski, T., Dimitrova, S. and Bhaskar, A. (2017), "Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements", Appl. Math. Model., 45, 422-438. https://doi.org/10.1016/j.apm.2017.01.005.
  6. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  7. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  8. Cho, J. (2019), "Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method", Steel Compos. Struct., 31(1), 43-51. https://doi.org/10.12989/scs.2019.31.1.043.
  9. Cicirello, A. (2019), "On the response bounds of damaged Euler-Bernoulli beams with switching cracks under moving masses", Int. J. Solids Struct., 172-173, 70-83. https://doi.org/10.1016/j.ijsolstr.2019.05.003.
  10. Cifuentes, A.O. (1989), "Dynamic response of a beam excited by a moving mass", Finite Elem. Anal. Des., 5(3), 237-246. https://doi.org/10.1016/0168-874X(89)90046-2.
  11. Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.
  12. Dimitrovova, Z. (2019), "Semi-analytical solution for a problem of a uniformly moving oscillator on an infinite beam on a two-parameter visco-elastic foundation", J. Sound Vib., 438, 257-290. https://doi.org/10.1016/j.jsv.2018.08.050.
  13. Duy, H.T., Van, T.N. and Noh, H.C. (2014), "Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation", Struct. Eng. Mech., 52(5), 1033-1049. https://doi.org/10.12989/sem.2014.52.5.1033.
  14. Dyniewicz, B., Bajer, C., Kuttler, K. and Shillor, M. (2019), "Vibrations of a Gao beam subjected to a moving mass", Nonlinear Analysis: Real World Applications. 50, 342-364. https://doi.org/10.1016/j.nonrwa.2019.05.007.
  15. Esen, I. (2011), "Dynamic response of a beam due to an accelerating moving mass using moving finite element approximation", Math. Comput.l Appl., 16(1), 171-182. https://doi.org/10.3390/mca16010171.
  16. Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  17. Esen, I. and Koc, M.A. (2015), "Dynamic response of a 120 mm smoothbore tank barrel during horizontal and inclined firing positions", Latin Am. J. Solids Struct., 12(8), 1462-1486. https://doi.org/10.1590/1679-78251576.
  18. Esen, I., Koc, M.A. and Cay, Y. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Latin Am. J. Solid. Struct., 15(10). https://doi.org/10.1590/1679-78255102.
  19. Froio, D., Rizzi, E., Simoes, F.M. and Da Costa, A.P. (2018), "Dynamics of a beam on a bilinear elastic foundation under harmonic moving load", Acta Mechanica, 229(10), 4141-4165. https://doi.org/10.1007/s00707-018-2213-4.
  20. Greco, F. and Lonetti, P. (2018), "Numerical formulation based on moving mesh method for vehicle-bridge interaction", Adv. Eng. Softw., 121, 75-83. https://doi.org/10.1016/j.advengsoft.2018.03.013.
  21. Hoang, T., Duhamel, D., Foret, G., Yin, H.P., Joyez, P. and Caby, R. (2017), "Calculation of force distribution for a periodically supported beam subjected to moving loads", J. Sound Vib., 388, 327-338. https://doi.org/10.1016/j.jsv.2016.10.031..
  22. Horii, H. and Nemat-Nasser, S. (1985), "Elastic fields of interacting inhomogeneities", Int. J. Solids Struct., 21(7), 731-745. https://doi.org/10.1016/0020-7683(85)90076-9.
  23. Hou, Z., Xia, H., Wang, Y., Zhang, Y. and Zhang, T. (2015), "Dynamic analysis and model test on steel-concrete composite beams under moving loads", Steel Compos. Struct., 18(3), 565-582. https://doi.org/10.12989/scs.2015.18.3.565.
  24. Ichikawa, M., Miyakawa, Y. and Matsuda, A. (2000), "Vibration analysis of the continuous beam subjected to a moving mass", J. Sound Vib., 230(3), 493-506. https://doi.org/10.1006/jsvi.1999.2625.
  25. Kadivar, M. and Mohebpour, S. (1998), "Forced vibration of unsymmetric laminated composite beams under the action of moving loads", Compos. Sci. Technol., 58(10), 1675-1684. https://doi.org/10.1016/S0266-3538(97)00238-8.
  26. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  27. Kim, J. and Reddy, J. (2013), "Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007.
  28. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties" Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
  29. Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in Timoshenko beam under moving mass using RELM", Steel Compos. Struct., 28(3), 279-288. https://doi.org/10.12989/scs.2018.28.3.279.
  30. Michaltsos, G., Sophianopoulos, D. and Kounadis, A. (1996), "The effect of a moving mass and other parameters on the dynamic response of a simply supported beam", J. Sound Vib., 191(3), 357-362. https://doi.org/10.1006/jsvi.1996.0127.
  31. Miyamoto, Y., Kaysser, W., Rabin, B., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media, New York, NY, USA.
  32. Mohebpour, S., Daneshmand, F. and Mehregan, H. (2013), "Numerical analysis of inclined flexible beam carrying one degree of freedom moving mass including centrifugal and Coriolis accelerations and rotary inertia effects", Mech. Based Des. Struct. Mach., 41(2), 123-145. https://doi.org/10.1080/15397734.2012.681592.
  33. Mohebpour, S.R., Vaghefi, M. and Ezzati, M. (2016), "Numerical analysis of an inclined cross-ply laminated composite beam subjected to moving mass with consideration the Coriolis and centrifugal forces", Eur. J. Mech. -A/Solids, 59, 67-75. https://doi.org/10.1016/j.euromechsol.2016.03.003.
  34. Moleiro, F., Correia, V.F., Ferreira, A. and Reddy, J. (2019), "Fully coupled thermo-mechanical analysis of multilayered plates with embedded FGM skins or core layers using a layerwise mixed model", Compos. Struct., 210, 971-996. https://doi.org/10.1016/j.compstruct.2018.11.073.
  35. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  36. Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Golbaharhaghighi, M. (2019), "Inverse dynamic analysis of an inclined FGM beam due to moving load for estimating the mass of moving load based on a CGM", Iranian J. Sci. Technol., T. Mech. Eng., 1-14. https://doi.org/10.1007/s40997-019-00291-2.
  37. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  38. Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
  39. Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Design, 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
  40. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  41. Stanisic, M.M. and Hardin, J.C. (1969), "On the response of beams to an arbitrary number of concentrated moving masses", J. Franklin Inst., 287(2), 115-123. https://doi.org/10.1016/0016-0032(69)90120-3
  42. Stojanovic, V., Kozic, P. and Petkovic, M.D. (2017), "Dynamic instability and critical velocity of a mass moving uniformly along a stabilized infinity beam", Int. J. Solids Struct., 108, 164-174. https://doi.org/10.1016/j.ijsolstr.2016.12.010
  43. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, The Institut of Materials, London, England.
  44. Thai, H.-T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
  45. Wu, J.-J. (2005), "Dynamic analysis of an inclined beam due to moving loads", J. Sound Vib., 288(1-2), 107-131. https://doi.org/10.1016/j.jsv.2004.12.020
  46. Wu, J.J. (2004), "Dynamic responses of a three-dimensional framework due to a moving carriage hoisting a swinging object", Int. J. Numer. Method. E., 59(13), 1679-1702. https://doi.org/10.1002/nme.916
  47. Xu, X., Xu, W. and Genin, J. (1997), "A non-linear moving mass problem", J. Sound Vib., 204(3), 495-504. https://doi.org/10.1006/jsvi.1997.0962