DOI QR코드

DOI QR Code

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan (The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Tinaztepe Campus) ;
  • Ozturk, Hasan (Department of Mechanical Engineering, Dokuz Eylul University, Tinaztepe Campus) ;
  • Gonenli, Can (The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Tinaztepe Campus)
  • Received : 2019.06.10
  • Accepted : 2020.02.13
  • Published : 2020.04.10

Abstract

In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

Keywords

References

  1. Afshari, P. and Widera, G.E.O. (2000), "Free vibration analysis of composite plates", J. Pressure Vessel Technol., 122, 390-398. doi:10.1115/1.556198
  2. Atlihan, G., Callioglu, H., Conkur, E.S. and Topcu, M. (2009), "Free vibration analysis of laminated composite beams by using DQM", J. Reinforced Plast. Compos., 28, 881-892. https://doi.org/10.1177/0731684407087561
  3. Belarbi, M.O., Tati, A., Houdayfa, O. and Khechai, A. (2017), "On the free vibration analysis of laminated composite and sandwich plates: a layerwise finite element formulation", Latin American J. Solids Struct., 14, 2265-2290. http://dx.doi.org/10.1590/1679-78253222
  4. Cantin, G. and Clough, R.W. (1968), "A curved, cylindrical-shell, finite element", AIAA J., 6(6), 1057-1062. https://doi.org/10.2514/3.4673
  5. Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound Vib., 191(4), 491-504. https://doi.org/10.1006/jsvi.1996.0136
  6. Chaubey, A.K. and Kumar, A. (2017), "Vibration of laminated composite shells with cutouts and concentrated mass", Int. J. Res. Eng. Technol., 2(9), 51-58. https://doi.org/10.2514/1.J056320
  7. Civalek, O. (2017), "Vibration of laminated composite panels and curved plates with different types of FGM composite constituent", Compos. Part B, 122, 89-108. https://doi.org/10.1016/j.compositesb.2017.04.012
  8. El-Helloty, A. (2016), "Free vibration analysis of stiffened laminated composite plates", Int. J. Comput. Appl., 156(1), 12-23. DOI: 10.9790/1684-140301108123
  9. Fallahi, N. and Delzendeh, M. (2018), "Free vibration analysis of laminated composite plates using meshless finite volume method", Eng. Anal. with Bound. Elements, 88, 132-144. https://doi.org/10.1016/j.enganabound.2017.12.011
  10. Ganesh, S., Keshava, S.K. and Mahato, P.K. (2016), "Free vibration analysis of delaminated laminated composite plates using finite element method", Procedia Eng., 144, 1067-1075. https://doi.org/10.1016/j.proeng.2016.05.061
  11. Hafizah, A.K.N., Viswanathan, K.K., Aziz, Z.A. and Lee, J.H. (2018), "Vibration of antisymmetric angle-ply composite annular plates of variable thickness", Journal of Mechanical Science and Technology, 32(5), 2155-2162. doi: 10.1007/s12206-018-0424-1
  12. Haldar, S. and Sheikh, A.H. (2005), "Free vibration analysis of isotropic and composite folded plates using a shear flexible element", Finite Elem. Anal. Des., 42, 208-226. https://doi.org/10.1016/j.finel.2005.06.003
  13. Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. http://dx.doi.org/10.12989/scs.2016.20.5.1087
  14. Javed, S., Viswanathan, K., Aziz, Z., Karthik, K. and Lee, J. (2016), "Vibration of antisymmetric angle-ply laminated plates under higher order shear theory", Steel Compos. Struct., 22(6), 1281-1299. http://dx.doi.org/10.12989/scs.2016.22.6.1281
  15. Javed, S., Viswanathan, K.K., Nurul Izyan, M.D., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26, 473-484. https://doi.org/10.12989/scs.2018.26.4.473
  16. Jun, L. and Hongxing, H. (1996), "Free vibration analyses of axially loaded laminated composite beams based on higher-order shear deformation theory", Meccanica, 46, 1299-1317. https://doi.org/10.1007/s11012-010-9388-7
  17. Liu, W.H., Huang, C.C. (1992), "Vibration analysis of folded plates", J. Sound Vib., 157(1), 123-137. https://doi.org/10.1016/0022-460X(92)90570-N
  18. Marbur, S.R. and Kant, T. (1996), "Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling", J. Sound Vib., 194(3), 337-351. https://doi.org/10.1006/jsvi.1996.0362
  19. Narita, Y. and Leissa, A.W. (1992), "Frequencies and mode shapes of cantilevered laminated composite plates", J. Sound Vib., 154(1), 161-172. https://doi.org/10.1016/0022-460X(92)90410-Y
  20. Ngo-Cong, D., Mai-Duy, N., Karunasena, W. and Tran-Cong, T. (2011), "Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method", Comput. Struct., 89, 1-13. https://doi.org/10.1016/j.compstruc.2010.07.012
  21. Niyogi, A.G., Laha, M.K. and Sinha, P.K. (1999), "Finite element vibration analysis of laminated composite folded plate structures", Shock Vib., 6, 273-283. http://dx.doi.org/10.1155/1999/354234
  22. Ozturk, H. (2012), "Vibration analysis of a pre-stressed laminated composite curved beam", Steel Compos. Struct., 19(3), 635-659. https://doi.org/10.12989/scs.2015.19.3.635
  23. Pandit, M. K., Haldar, S. and Mukhopadhyay, M. (2007), "Free vibration analysis of laminated composite rectangular plate using finite element method", J. Reinf. Plast. Comp., 26(1), 69-80. https://doi.org/10.1177/0731684407069955
  24. Peng, L.X. (2015), "Free vibration analysis of symmetrically laminated folded plate structures using an element-free galerkin method", Math.. Problem. Eng., 2015,13 pages. http://dx.doi.org/10.1155/2015/124296
  25. Petyt, M. and Nath, J.M.D. (1971), "Vibration analysis of singly curved rectangular plates", J. Sound Vib., 13(4), 485-497. https://doi.org/10.1016/S0022-460X(70)80053-0
  26. Qatu, M.S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-200, Part 1: Laminated composite shells", ASME Appl. Mech. Rev., 55(4), 325-350. doi:10.1115/1.1483079
  27. Ramtekkar, G.S. (2009), "Free vibration analysis of delaminated beams using mixed finite element method", J. Sound Vib., 328, 428-440. https://doi.org/10.1016/j.jsv.2009.08.008
  28. Reddy, J.N. (2003), "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition", CRC Press., U.S.A.
  29. Thinh, T.I., Binh, B.V. and Tu, T.M. (2012), "Bending and vibration analysis of multi-folding laminate composite plate using finite element method", Vietnam J. Mech., 34(3), 185-202. http://dx.doi.org/10.15625/0866-7136/34/3/2359
  30. Wittrick, W. and Horsington, R. (1984), "Buckling and vibration of composite folded-plate structures of finite length in combined shear and compression", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), 107-144. https://doi.org/10.1098/rspa.1984.0026
  31. Yas, M.H. and Garmsiri, K. (2010), "Three-dimensional free vibration analysis of cylindrical shells with condinuous grading reinfrocement", Steel Compos. Struct., 10(4), 349-360. http://dx.doi.org/10.12989/scs.2010.10.4.349
  32. Ye, T., Jin, G., Chen, Y., Ma, X. and Su, Z. (2013), "Free vibration analysis of laminated composite shallow shells with general elastic boundaries", Compos. Struct., 106, 470-490. https://doi.org/10.1016/j.compstruct.2013.07.005

Cited by

  1. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.531