DOI QR코드

DOI QR Code

Buckling response of smart plates reinforced by nanoparticles utilizing analytical method

  • Farrokhian, Ahmad (Mechanical Engineering group, Pardis College, Isfahan University of Technology)
  • 투고 : 2020.01.25
  • 심사 : 2020.03.19
  • 발행 : 2020.04.10

초록

This article deals with the buckling analysis in the plates containing carbon nanotubes (CNTs) subject to axial load. In order to control the plate smartly, a piezoelectric layer covered the plate. The plate is located in elastic medium which is modeled by spring elements. The Mori-Tanaka low is utilized for calculating the equivalent mechanical characteristics of the plate. The structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The Navier method is applied to obtain the bulking load. The effects of the applied voltage to the smart layer, agglomeration and volume percent of CNT nanoparticles, geometrical parameters and elastic medium of the structure are assessed on the buckling response. It has been demonstrated that by applying a negative voltage, the buckling load is increased significantly.

키워드

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi. A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Ahmadi, I. (2017), "A Galerkin Layerwise Formulation for three-dimensional stress analysis in long sandwich plates", Steel Compos. Struct., 24(5), 523-536. https://doi.org/10.12989/scs.2017.24.5.523.
  4. Benchiha, A., Madani, K., Touzain, S., Feaugas, X. and Ratwani, M. (2016), "Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch ", Steel Compos. Struct., 20(4), 951-962. https://doi.org/10.12989/scs.2016.20.4.951.
  5. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  6. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  7. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 913-924. https://doi.org/10.12989/scs.2019.33.1.081.
  8. Bouafia, K.h., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  9. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516.: https://doi.org/10.12989/scs.2019.31.5.503.
  10. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  11. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  12. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  13. Chen, Y. and Shi, Z.F. (2005), "Analysis of a functionally graded piezothermoelatic hollow cylinder", J. Zhejiang Univ. SCI., 6A, 956-61, https://doi.org/10.1080/01495730802250508.
  14. Chen, X.Ch., Bai, Z.zh., Zeng, Y., Jiang, R.J. and Francis, T.K. (2016), "Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation", Steel Compos. Struct., 21(5), 1045-1067. https://doi.org/10.12989/scs.2016.21.5.1045.
  15. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  16. Dai, H.L., Fu, Y.M. and Dong, Z.M., (2006), "Exact solutions for functionally graded pressure vessels in a uniform magnetic field", Int. J. Solids Struct., 43, 5570-5580. https://doi.org/10.1016/j.ijsolstr.2005.08.019.
  17. Dutta, G., Singh V.K., Mahapatra, T.R. and Panda S.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  18. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  19. Doan, T.N., Thom, D.V., Thanh, N.T., Chuong, P.V. and Nguyen, H.N. (2020), "Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear deformation Quasi-3D theory", Compos. Struct., 232, 111526, https://doi.org/10.1016/j.compstruct.2019.111526.
  20. Fang, X.Q., Liu, J.X., Yang, Sh.P. and Zhang, L.L. (2010), "Effect of surface/interface on the dynamic stress of two interacting cylindrical nano-inhomogeneities under compressional waves", Thin Solid Films, 518, 6938-6944. https://doi.org/10.1016/j.tsf.2010.06.022.
  21. Farokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733.
  22. Galic, D. and Horgan, C.O. (2002), "The stress response of radially polarized rotating piezoelectric cylinders", J. Appl. Mech., 66, 257-272. https://doi.org/10.1115/1.1572900.
  23. Garinei, A. and Marsili, R. (2013), "Thermoelastic Stress Analysis of the contact between a flat plate and a cylinder", Measurement, 52, 102-110, https://doi.org/10.1016/j.measurement.2014.03.005.
  24. Habib, E.S., El-Hadek, M.A. and El-Megharbel, A. (2019), "Stress Analysis for Cylinder Made of FGM and Subjected to Thermo-Mechanical Loadings", Metals, 9, 1-14. https://doi.org/10.3390/met9010004.
  25. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada. F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Steel Compos. Struct., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  26. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  27. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  28. Lee, D.S. (2007), "The effect of an elliptic crack on the stress distribution in a long circular cylinder", Int. J. Solids Struct., 44, 4110-4119, https://doi.org/10.1016/j.ijsolstr.2006.11.009.
  29. Li, Y., Wang, C. and Wang, R. (2012), "The thermal stress analysis and structure optimum of neck tube with vertical cryogenic insulated cylinders based on ANSYS", Nuclear Eng. Design, 252, 144-152. https://doi.org/10.1016/j.nucengdes.2012.05.042.
  30. Li, T,J,, Liu, S.W. and Chan, S.L. (2015), "Cross-sectional analysis of arbitrary sections allowing for residual stresses", Steel Compos. Struct., 18(4), 444-456, https://doi.org/10.12989/scs.2015.18.4.985.
  31. Liew, K.M., Kitipornchai, S., Zhang, X.Z. and Lim, C.W., (2003), "Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders", Int. J. Solids Struct., 40, 2355-2380, https://doi.org/10.1016/S0020-7683(03)00061-1.
  32. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  33. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mat., 21, 1906-1929, https://doi.org/10.1177/1099636217727577.
  34. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610, DOI: https://doi.org/10.12989/scs.2019.32.5.595.
  35. Matsunaga, H. (2000), "Vibration and stability of cross-ply d composite plates according to a global higher-order plate theory", Compos. Struct., 48, 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
  36. Mehar K., Mahapatra, T.R., Panda, S.K. and Katariya, P.V. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144, 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  37. Mehar K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  38. Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  39. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of CNTnanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  40. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Tech., 8, 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  41. Putcha, N.S. and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", J. Sound Vib., 104, 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
  42. Reddy, J.N. (2002), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Ed., CRC Press,.
  43. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679, DOI: https://doi.org/10.12989/scs.2019.33.5.663.
  44. Sallem, H. and Hamdi, H. (2015), "Analysis of Measured and Predicted Residual Stresses Induced by Finish Cylindrical Grinding of High Speed Steel with CBN Wheel", Procedia CIRP, 31, 381-386, https://doi.org/10.1016/j.procir.2015.03.080.
  45. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98, https://doi.org/10.12989/anr.2019.7.2.089.
  46. Shi, D.L. and Feng, X.Q. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composties", J. Eng. Mat. Tech ASME, 126, 250-270, DOI: https://doi.org/10.1115/1.1751182
  47. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda. S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conf. Series: Mat. Sci. Eng., 178 (1), 012026. https://doi.org/10.1088/1757-899X/178/1/012026
  48. Singh V.K. and Panda S.K. (2015a), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853.
  49. Singh V.K. and Panda S.K. (2015b), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23, 2078-2093. https://doi.org/10.1177/1077546315609988.
  50. Singh V.K. and Panda S.K. (2016), "Numerical investigation on nonlinear vibration behavior of laminated cylindrical panel embedded with PZT layers", Procedia Eng., 144, 660-667, https://doi.org/10.1016/j.proeng.2016.05.062.
  51. Singh V.K., Mahapatra, T.R. and Panda S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
  52. Singh V.K., Mahapatra, T.R. and Panda S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314, https://doi.org/10.1016/j.euromechsol.2016.08.006.
  53. Tiersten, H.F. (1969), "Linear piezoelectric plate vibrations", Plenum Press, New York.
  54. Wang, Y. and Shao, Y. (2018), "Stress analysis of a new steel-concrete composite I-girder", Steel Compos. Struct., 28(1), 51-61. https://doi.org/10.12989/scs.2018.28.1.051.
  55. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.

피인용 문헌

  1. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073