References
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Bailey, T. and Ubbard, J.E. (1985), "Distributed piezoelectricpolymer active vibration control of a cantilever beam", J. Guidance, Control, and Dynamics, 8(5), 605-611. https://doi.org/10.2514/3.20029
- Barari, A., Kaliji, H.D., Ghadimi, M. and Domairry, G. (2011), "Non-linear vibration of Euler-Bernoulli beams", Latin Am. J. Solids Struct., 8(2), 139-148. https://doi.org/10.1590/S1679-78252011000200002
- Bauchau, O.A. and Craig, J.I. (2009), "Euler-Bernoulli beam theory", In: Structural Analysis, Springer, pp. 173-221.
- Ebrahimi, F. and Barati, M.R. (2017), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
- Ebrahimi, F., Shaghaghi, G.R. and Salari, E. (2014), "Vibration analysis of size-dependent nano beams based on nonlocal Timoshenko Beam Theory", J. Mech. Eng. Technol. (JMET), 6(2).
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler--Bernoulli nanobeams by using finite element method", Appl. Mathe. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Friesen, C., Dimitrov, N., Cammarata, R.C. and Sieradzki, K. (2001), "Surface stress and electrocapillarity of solid electrodes", Langmuir, 17(3), 807-815. https://doi.org/10.1021/la000911m
- Gayen, D. and Roy, T. (2013), "Hygro-thermal effects on stress analysis of tapered laminated composite beam", Int. J. Compos. Mater., 3(3), 46-55. https://doi.org/10.5923/j.cmaterials.20130303.02
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
- He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8(7), 1798-1802. https://doi.org/10.1021/nl0733233
- Henderson, J.P., Plummer, A. and Johnston, N. (2018), "An electro-hydrostatic actuator for hybrid active-passive vibration isolation", Int. J. Hydromechatron., 1(1), 47-71. https://doi.org/10.1504/IJHM.2018.090305
- Hosseini-Hashemi, S., Fakher, M. and Nazemnezhad, R. (2013), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: A comparison between Euler-Bernoulli and Timoshenko", J. Solid Mech., 5(3), 290-304.
- Huang, G.-Y. and Yu, S.-W. (2006), "Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring", Physica Status Solidi (b), 243(4). https://doi.org/10.1002/pssb.200541521
- Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computati. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
- Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R (2013), "Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams", Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
- Lee, U. and Kim, J. (2000), "Determination of nonideal beam boundary conditions: a spectral element approach", AIAA Journal, 38(2), p. 309. https://doi.org/10.2514/2.958
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Li, X.Y., Wang, Z.K. and Huang, S.H. (2004), "Love waves in functionally graded piezoelectric materials", Int. J. Solids Struct., 41(26), 7309-7328. https://doi.org/10.1016/j.ijsolstr.2004.05.064
- Marzbanrad, J., Boreiry, M. and Shaghaghi, G.R. (2016), "Thermo-electro-mechanical vibration analysis of sizedependent nanobeam resting on elastic medium under axial preload in presence of surface effect", Appl. Phys. A, 122(7), p. 691. https://doi.org/10.1007/s00339-016-0218-1
- Marzbanrad, J., Boreiry, M. and Shaghaghi, G.R. (2017), "Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium", Appl. Phys. A, 123(4), p. 246. https://doi.org/10.1007/s00339-017-0768-x
- Pakdemirli, M. and Boyaci, H. (2001), "Vibrations of a stretched beam with non-ideal boundary conditions", Mathe. Computat. Applicat., 6(3), 217-220. https://doi.org/10.3390/mca6030217
- Pakdemirli, M. and Boyaci, H. (2003), "Non-linear vibrations of a simple--simple beam with a non-ideal support in between", J. Sound Vib., 268(2), 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Park, S.K. and Gao, X.L. (2006), "Bernoulli--Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), p. 2355. https://doi.org/10.1088/0960-1317/16/11/015
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Samaei, A.T., Bakhtiari, M. and Wang, G.-F. (2012), "Timoshenko beam model for buckling of piezoelectric nanowires with surface effects", Nanoscale Res. Lett., 7(1), p. 201. https://doi.org/10.1186/1556-276X-7-201
- Schmid, M., Hofer, W., Varga, P., Stoltze, P., Jacobsen, K.W. and No, J.K. (1995), "Surface stress, surface elasticity, and the size effect in surface segregation", Phys. Rev. B, 51(16), p. 10937. https://doi.org/10.1103/PhysRevB.51.10937
- Tanaka, Y. (2018), "Active vibration compensator on moving vessel by hydraulic parallel mechanism", Int. J. Hydromechatron., 1(3), 350-359. https://doi.org/10.1504/ijhm.2018.094887
- Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
- Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4), 1060-1072. https://doi.org/10.1021/nl035198a
- Wang, Z., Xie, Z. and Huang, W. (2018), "A pin-moment model of flexoelectric actuators", Int. J. Hydromechatron., 1(1), 72-90. https://doi.org/10.1504/IJHM.2018.090306
- Zhao, M.-H., Wang, Z.-L. and Mao, S.X. (2004), "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope", Nano Lett., 4(4), 587-590. https://doi.org/10.1021/nl035198a
Cited by
- Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.115