DOI QR코드

DOI QR Code

Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity

  • Ahmed, Ridha A. (Al-Mustansiriah University, Engineering Collage) ;
  • Al-Maliki, Ammar F.H. (Al-Mustansiriah University, Engineering Collage) ;
  • Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
  • 투고 : 2019.07.23
  • 심사 : 2019.10.25
  • 발행 : 2020.02.25

초록

This paper studies forced vibrational behavior of porous nanocrystalline silicon nanoshells under radial dynamic loads using strain gradient theory (SGT). This type of material contains many pores inside it and also there are nano-size grains which define the material character. The formulation for nanocrystalline nanoshell is provided by first order shell theory and a numerical approach is used in order to solve nanoshell equations. SGT gives a scale factor related to stiffness hardening provided by nano-grains. For more accurate description of size effects due to nano-grains or nano-pore, their surface energy influences have been introduced. Surface energy of inclusion exhibit extraordinary influence on dynamic response of the nanoshell. Also, dynamic response of the nanoshell is affected by the scale of nano-grain and nano-pore.

키워드

과제정보

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

참고문헌

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  2. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor. Mainten., Int. J., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147
  3. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  4. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393
  5. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., Int. J., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  6. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
  7. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  8. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  9. Ebrahimi, F. and Barati, M.R. (2016), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Physics A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  10. Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica, 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6
  11. Ebrahimi, F. and Barati, M.R. (2017b), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036
  12. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., Int. J., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465
  13. Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings", Adv. Aircraft Spacecraft Sci., Int. J., 5(5), 515-531. https://doi.org/10.12989/aas.2018.5.5.515
  14. Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Mathe. Computat., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002
  15. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  16. Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B: Condensed Matter, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006
  17. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  18. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electromechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
  19. Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
  20. Lim, C.W., Zhang, G and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  21. Mehralian, F., Beni, Y.T. and Ansari, R. (2016), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024
  22. Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B: Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030
  23. Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., Int. J., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305
  24. Mohammadi, M., Safarabadi, M., Rastgoo, A. and Farajpour, A. (2016), "Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment", Acta Mechanica, 227(8), 2207-2232. https://doi.org/10.1007/s00707-016-1623-4
  25. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
  26. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., Int. J., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  27. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  28. Sun, J., Lim, C.W., Zhou, Z., Xu, X. and Sun, W. (2016), "Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells", J. Appl. Phys., 119(21), 214303. https://doi.org/10.1063/1.4952984
  29. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  30. Wang, G.F., Feng, X.Q., Yu, S.W. and Nan, C.W. (2003), "Interface effects on effective elastic moduli of nanocrystalline materials", Mater. Sci. Eng.: A, 363(1), 1-8. https://doi.org/10.1016/S0921-5093(03)00253-3
  31. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  32. Zaera, R., Fernandez-Saez, J. and Loya, J.A. (2013), "Axisymmetric free vibration of closed thin spherical nanoshell", Compos. Struct., 104, 154-161. https://doi.org/10.1016/j.compstruct.2013.04.022
  33. Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
  34. Zenkour, A.M. and Abouelregal, A.E. (2014), "Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model", Acta Mechanica, 225(12), 3409-3421. https://doi.org/10.1007/s00707-014-1146-9
  35. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125

피인용 문헌

  1. Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam vol.12, pp.2, 2021, https://doi.org/10.12989/acc.2021.12.2.135
  2. Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.233