DOI QR코드

DOI QR Code

Tunneling the size of iron oxide NPs using different alcohols and proportions water-alcohol

  • Rivera, F.L. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada) ;
  • Sanchez-Marcos, J. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada) ;
  • Menendez, N. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada) ;
  • Herrasti, P. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada) ;
  • Mazario, E. (Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Fisica Aplicada)
  • 투고 : 2019.04.30
  • 심사 : 2019.09.04
  • 발행 : 2020.02.25

초록

In this work the properties of iron oxide magnetic nanoparticles (MNPs) synthesized by electrochemical method using different water-alcohol proportions and alcohols have been investigated. The syntheses were carried out using 99% iron foils acting electrodes in a 0.04 M NaCl solutions at room temperature applying 22 mAcm-2 on the working electrode, mostly obtaining magnetite nanoparticles. The impact of the electrolyte in the size of the synthesized MNPs has been evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), chronopotentiometric studies, and magnetic characterization. The results have shown that nanoparticles can be obtained in the range of 6 to 26 nm depending on the type of alcohol and the proportions in the mixture of water-alcohol. The same trend has been observed for all alcohols. As the proportion of these in the medium increases, the nanoparticles obtained are smaller in size. This trend is maintained until a certain proportion of alcohol: 50% for methanol, and 60% for the rest of alcohols, proportions where obtaining a single phase of magnetite is not favored.

키워드

과제정보

연구 과제 주관 기관 : Spanish Ministry of Science, Innovation and Universities, National Council of Science and Technology of Mexico (CONACYT)

This research was funded by the Spanish Ministry of Science, Innovation and Universities with the projects PGC2018-095642-B-100. The authors also thanks to the National Council of Science and Technology of Mexico (CONACYT) for the grant number 709903.

참고문헌

  1. Butt, F.A. and Jafri, S.M.M. (2015), "Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis", Adv. Nano Res., Int. J., 3(3), 169-176. https://doi.org/10.12989/anr.2015.3.3.169
  2. Cabrera, L., Gutierrez, S., Menendez, N., Morales, M.P. and Herrasti, P. (2008), "Magnetite nanoparticles: electrochemical synthesis and characterization", Electrochim. Acta, 53(8) 3436-3441. https://doi.org/10.1016/j.electacta.2007.12.006
  3. Chen, H.I. and Chang, H.Y. (2004), "Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents", Colloids Surf. A Physicochem. Eng. Asp., 242, 61-69. https://doi.org/10.1016/j.colsurfa.2004.04.056
  4. Cui, H., Ren, W., Lin, P. and Liu, Y. (2013), "Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route", J. Exp. Nanosci., 8(7-8), 869-875. https://doi.org/10.1080/17458080.2011.61654
  5. Dang, F., Enomoto, N., Hojo, J. and Enpuku, K. (2009), "Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent", Ultrason. Sonochem., 16(5), 649-654. https://doi.org/10.1016/j.ultsonch.2008.11.003
  6. Fang, M., Strom, V., Olsson, R.T., Belova, L. and Rao, K.V. (2012), "Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles", Nanotechnology, 23(14), 145601-145610. https://doi.org/10.1088/0957-4484/23/14/14560
  7. Gao, J., Gu, H. and Xu, B. (2009), "Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications", Acc. Chem. Res., 42(8), 1097-1107. https://doi.org/10.1021/ar9000026
  8. Gawande, M.B., Branco, P.S. and Varma, R.S. (2013), "Nanomagnetite ($Fe_{3}O_{4}$) as a support for recyclable catalysts in the development of sustainable methodologies", Chem. Soc. Rev., 42, 3371-3393. https://doi.org/10.1039/C3CS35480F
  9. Han, C., Zhu, D., Wu, H., Li, Y., Cheng, L. and Hu, K. (2016), "TEA controllable preparation of magnetite nanoparticles ($Fe_{3}O_{4}$ NPs) with excellent magnetic properties", J. Magn. Magn. Mater., 408, 408213-408216. https://doi.org/10.1016/j.jmmm.2016.02.060
  10. Hirt, A.M., Lanci, L., Dobson, J., Weidler, P. and Gehring, A.U. (2002), "Low-temperature magnetic properties of lepidocrocite". J. Geophys. Res., 107(B1), EPM-5. https://doi.org/10.1029/2001JB000242
  11. Hughes, M.P. (2000), "AC electrokinetics: applications for nanotechnology", Nanotechnology, 11(2), 124-132. https://doi.org/10.1088/0957-4484/11/2/314
  12. Karimzadeh, I., Dizaji, H.R. and Aghazadeh, M. (2016a), "Development of a facile and effective electrochemical strategy for preparation of iron oxides ($Fe_{3}O_{4}$ and ${\gamma}-Fe_{2}O_{3}$) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of $Fe_{3}O_{4}$ superparamagnetic nanoparticles for biomedical applications", J. Magn. Magn. Mater., 416, 41681-41688. https://doi.org/10.1016/j.jmmm.2016.05.015
  13. Karimzadeh, I., Dizaji, H.R. and Aghazadeh, M. (2016b), "Preparation, characterization and PEGylation of superparamagnetic $Fe_{3}O_{4}$ nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method", Mater. Res. Express, 3(9), 095022-095032. https://doi.org/10.1088/2053-1591/3/9/095022
  14. Lozano, I., Casillas, N., Ponce de Leon, C., Walsh, F. and Herrasti, P. (2017), "New insights into the electrochemical formation of magnetite nanoparticles", J. Electrochem. Soc., 164(4), D184-D191. https://doi.org/10.1149/2.1091704jes
  15. Lozano, I., Lopez, C., Menendez, N., Casillas, N. and Herrasti, P. (2018), "Design, construction and evaluation of a 3D printed electrochemical flow cell for the synthesis of magnetite nanoparticles", J. Electrochem. Soc., 165(11), H688-H697. https://doi.org/10.1149/2.1401810jes
  16. Marin, T., Ortega, D., Montoya, P., Arnache, O. and Calderon, J. (2014), "A new contribution to the study of the electrosynthesis of magnetic nanoparticles: the influence of the supporting electrolyte", J. Appl. Electrochem., 44(12), 1401-1410. https://doi.org/10.1007/s10800-014-0766-z
  17. Mazario, E., Stemper, J., Helal, A.S., Mayoral, A., Decorse, P., Losno, R., Lion, C., Ammar, S., Le Gall, T. and Hemadi, M. (2019), "New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution", J. Nanopart. Res., 19(8), 4911-4919. https://doi.org/10.1166/jnn.2019.16804
  18. Montoya, P., Marin, T., Mejia, S., Arnache, O. and Calderon, J.A. (2017), "Elucidation of the mechanism of electrochemical formation of magnetite nanoparticles by in situ raman spectroscopy", J. Electrochem. Soc., 164(14), D1056-D1065. https://doi.org/10.1149/2.0181802jes
  19. Morup, S., Brok, E. and Frandsen, C. (2013), "Spin Structures in Magnetic Nanoparticles", J. Nanomater., 2013, 1-8. https://doi.org/10.1155/2013/720629
  20. Negi, D.S., Sharona, H., Bhat, U., Palchoudhury, S., Gupta, A. and Datta, R. (2017), "Surface spin canting in $Fe_{3}O_{4}$ and $CoFe_{2}O_{4}$ nanoparticles probed by high-resolution electron energy loss spectroscopy", Phys. Rev. B, 95(17), 174444. https://doi.org/10.1103/PhysRevB.95.174444
  21. Pascal, C., Pascal, J.L., Favier, F., Elidrissi Moubtassim, M.L. and Payen, C. (1999), "Electrochemical synthesis for the control of ${\gamma}-Fe_{2}O_{3}$ nanoparticle size. Morphology, microstructure, and magnetic behavior", Chem. Mater., 11(1), 141-147. https://doi.org/10.1021/cm980742f
  22. Starowicz, M., Starowicz, P., Zukrowski, J., Przewoznik, J., Lemanski, A., Kapusta, C. and Banas, J. (2011), "Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size", J. Nanopart. Res., 13(12), 7167-7176. https://doi.org/10.1007/s11051-011-0631-5
  23. Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T. and Serna C.J. (2003), "The preparation of magnetic nanoparticles for applications in biomedicine", J. Phys. D: Appl. Phys., 36(13), R182-R197. https://doi.org/10.1088/0022-3727/36/13/202
  24. Thanh, N.T., Maclean, N. and Mahiddine, S. (2014), "Mechanisms of nucleation and growth of nanoparticles in solution", Chem. Rev., 114(15), 7610-7630. https://doi.org/10.1021/cr400544s