DOI QR코드

DOI QR Code

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V. (Department of Mechanical Engineering, National Institute of Technology Rourkela) ;
  • Panda, Subrata Kumar (Department of Mechanical Engineering, National Institute of Technology Rourkela)
  • Received : 2019.10.09
  • Accepted : 2019.11.30
  • Published : 2020.01.25

Abstract

The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  4. Amaro, A.M., Reis, P.N.B., de Moura, M.F.S.F. and Neto, M.A. (2014), "Buckling analysis of laminated composite plates submitted to compression after impact", Fibers Polym., 15(3), 560-568. https://doi.org/10.1007/s12221-014-0560-x.
  5. Atmane, H.A., Tounsi, A. Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  6. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  7. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  8. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Samy R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  9. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  10. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi. A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  11. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  12. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi A., and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  13. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  14. Civalek, O. (2006), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353-366. https://doi.org/10.12989/scs.2006.6.4.353.
  15. Civalek, O. (2007a) "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127.
  16. Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Eng., 24, 169-181. https://doi.org/10.1002/cnm.961.
  17. Civalek, O. and Acar, M.H. (2007b), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessels Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  18. Civalek, O. and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Struct Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001.
  19. Cook, R.D, Malkus, D.S, Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, 4th edition, John Wiley & Sons Pvt. Ltd., Singapore.
  20. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  21. Draiche, K., Tounsi A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  22. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  23. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four-variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  24. Gao, G.W., Tang, E.L., Feng, M.H., Han, Y.F., Li, Y., Liu, M., Xu, Y.L., Wang, L., Lin, X.C., Wang, R.Z., Cheng, Y.G., Zhao, L.L., Liang, Z.G., Wang, J.R., Zhao, G.J., Gao, Q. and Zheng, T.Z. (2018), "Research on dynamic response characteristics of CFRP/Al HC SPs subjected to high-velocity impact", Def. Technol., 14(5), 503-512. https://doi.org/10.1016/j.dt.2018.06.017.
  25. Garg, A.K., Khare, R.K. and Kant, T. (2006), "Free vibration of skew fiber-reinforced composite and sandwich laminates using a shear deformable finite element model", J Sand. Struct Mater., 8(1), 33-53. https://doi.org/10.1177/1099636206056457.
  26. Girish, J. and Ramachandra, L.S. (2005), "Postbuckling and vibration analysis of Antisymmetric angle-ply composite plates", J. Therm. Stresses, 28(11), 1145-1159. https://doi.org/10.1080/014957390967866.
  27. Hause, T., Librescu, L. and Camarda, C.J. (1998), "Postbuckling of anisotropic flat and doubly-curved sandwich panels under complex loading conditions", Int. J. Solids Struct., 35(23), 3007-3027. https://doi.org/10.1016/S0020-7683(97)00360-0.
  28. Juhasz, Z. and Szekrenyes, A. (2015a), "Progressive buckling of a simply supported delaminated orthotropic rectangular composite plate", Int. J. Solids Struct., 69-70, 217-229. https://doi.org/10.1016/j.ijsolstr.2015.05.028.
  29. Juhasz, Z. and Szekrenyes, A. (2015b), "Estimation of local delamination buckling in orthotropic composite plates using Kirchhoff plate finite elements", Math. Prob. Eng., http://doi.org/10.1155/2015/749607.
  30. Jung, W.Y., Han, S.C., Lee, W.H. and Park, W.T. (2016), "Post-buckling analysis of laminated composite shells under shear loads", Steel Compos. Struct., 21(2), 371-394. https://doi.org/10.12989/scs.2016.21.2.373.
  31. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and S.R. Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  32. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher-order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  33. Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.
  34. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., https://doi.org/10.1007/s00366-019-00732-1.
  35. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J Sand. Struct Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  36. Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010.
  37. Matsunaga, H. (2006), "Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 72(2), 177-192. https://doi.org/10.1016/j.compstruct.2004.11.016.
  38. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J Sand. Struct Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  39. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  40. Nikrad, S.F. and Asadi, H. (2015), "Thermal post-buckling analysis of temperature dependent delaminated composite plates", Thin Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027.
  41. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
  42. Park, T., Lee, S.Y., Seo, J.W. and Voyiadjis, G.Z. (2008), "Structural dynamic behavior of skew sandwich plates with laminated composite faces", Compos.: Part B, 39, 316-326. https://doi.org/10.1016/j.compositesb.2007.01.003.
  43. Reddy, J.N. (2004a), An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Cambridge, UK.
  44. Reddy, J.N. (2004b), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edition, CRC Press, Boca Raton, FL.
  45. Sadamoto, S., Tanaka, S., Taniguchi, K., Ozdemir, M., Bui, T.Q., Murakami, C. and Yanagihara, D. (2017), "Buckling analysis of stiffened plate structures by an improved meshfree flat shell formulation", Thin Wall. Struct., 117, 303-313. https://doi.org/10.1016/j.tws.2017.04.012.
  46. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/ANR.2019.7.2.089
  47. Shiau, L.C. and Kuo, S.Y. (2004), "Thermal postbuckling behavior of composite sandwich plates", J. Eng. Mech., 130(10), 1160-1167. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1160).
  48. Singh, G., Rao, V.G. and Iyengar, N.G.R. (1993), "Thermal post-buckling behavior of laminated composite plates", AIAA J., 32(6), 1336-1338. https://doi.org/10.2514/3.12143.
  49. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
  50. Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct., 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4.
  51. Striz, A.G., Chen, W.L. and Bert, C.W. (1997), "Free vibration of plates by the high accuracy quadrature element method", J Sound Vib., 202, 689-702. https://doi.org/10.1006/jsvi.1996.0846
  52. Thankam, V.S., Singh, G., Rao, G.V. and Rath, A.K. (2003), "Thermal post-buckling behaviour of laminated plates using a shear-flexible element based on coupled-displacement field", Compos. Struct., 59(3), 351-359. https://doi.org/10.1016/S0263-8223(02)00243-X.
  53. Wu, Y., Xing, Y. and Liu, B. (2018), "Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method", Compos. Struct., 205, 11-25. https://doi.org/10.1016/j.compstruct.2018.08.095.
  54. Yoshida, K., Sadamoto, S., Setoyama, Y., Tanaka, S., Bui, T.Q., Murakami C. and Yanagihara, D. (2017), "Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates", J. Mar. Sci. Technol., 22(3), 501-512. https://doi.org/10.1007/s00773-017-0433-2.
  55. Zakeri, A.A. and Alinia, M.M. (2006), "An analytical study on post-buckling behaviour of imperfect sandwich panels subjected to uniform thermal stresses", Thin Wall. Struct., 44(3), 344-353. https://doi.org/10.1016/j.tws.2006.03.001.
  56. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  57. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  58. Zhai, Y., Su, J. and Liang, S. (2018), "Free vibration and buckling analysis of composite sandwich plates in thermal environment", J Sand. Struct Mater., http://doi.org/10.1177/1099636218795375.
  59. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.

Cited by

  1. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399
  2. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  3. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697