참고문헌
- Abbassian, F., Dawswell, D.J. and Knowles, N.C. (1987), "Free Vibration Benchmarks. Atkins Engineering Sciences": Glasgow.
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
- Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
- Ali, G.A.M., Makhlouf, S.A., Yusoff, M.M. and Chong, K.F. (2015), "Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes", Rev. Adv. Mater. Sci., 41(1), 35-43.
- Ali, M.A., Mondal, K., Wang, Y., Jiang, H., Mahal, N.K., Castellano, M.J., Sharma, A. and Dong, L. (2017), "In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors", Lab. Chip., 17(2),274-285. https://doi.org/10.1039/C6LC01266C
- Al-Sherbini, A.S., Bakr, M., Ghoneim, I. and Saad, M. (2017), "Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene", J. Adv. Res., 8(3), 209-215. https://doi.org/10.1016/j.jare.2017.01.004.
- Ansari, R., Ajori, S. and Motevalli, B. (2012), "Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation", Superlattices Microstruct., 51(2), 274-289. https://doi.org/10.1016/j.spmi.2011.11.019.
- Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A., 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028.
- Aristodemo, M. (1985), "A high-continuity finite element model for two dimensional elastic problems", Comput. Struct., 21(5), 987-993. https://doi.org/10.1016/0045-7949(85)90211-1.
- Bilotta, A., Formica, G. and Turco, E. (2010), "Performance of a high-continuity finite element in three-dimensional elasticity", Int. J. Numer. Method. Biomed. Eng., 26(9), 1155-1175. https://doi.org/10.1002/cnm.1201.
- Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K. and Ni, Z. (2009), "Atomistic simulations of mechanical properties of graphene nanoribbons", Phys. Lett. A, 373(37), 3359-3362. https://doi.org/10.1016/j.physleta.2009.07.048.
- Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size Dependence of Young's Modulus in ZnO Nanowires", Phys. Rev. Lett., 96(7).
- Chu, L., Shi, J. and Souza de Cursi, E. (2018), "Vibration analysis of vacancy defected graphene sheets by monte carlo based finite element method", Nanomaterials, 8(7), 489. https://doi.org/10.3390/nano8070489.
- Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V. and Rimini, E. (2009), "Ion irradiation and defect formation in single layer graphene", Carbon, 47(14), 3201-3207. https://doi.org/10.1016/j.carbon.2009.07.033.
- Dastjerdi, S., Lot, M. and Jabbarzadeh, M. (2016), "The effect of vacant defect on bending analysis of graphene sheets based on the Mindlin nonlocal elasticity theory", Compos. Part B Eng., 98(1), 78-87. https://doi.org/10.1016/j.compositesb.2016.05.009.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Fadaee, M. (2016), "Buckling analysis of a defective annular graphene sheet in elastic medium", Appl. Math. Model, 40(3), 1863-1872. https://doi.org/10.1016/j.apm.2015.09.029.
- Georgantzinos, S.K., Giannopoulos, G.I. and Anifantis, N.K. (2010), "Numerical investigation of elastic mechanical properties of graphene structures", Mater. Des., 31(10), 4646-4654. https://doi.org/10.1016/j.matdes.2010.05.036.
- Guo, Y., Ruess, M. and Gurdal, Z. (2014), "A contact extended isogeometric layerwise approach for the buckling analysis of delaminated composites", Compos. Struct., 116(1), 55-66. https://doi.org/10.1016/j.compstruct.2014.05.006.
- Hosseini Hashemi, S., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by visco pasternak medium", Compos. Part B-Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008.
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Method. Appl. M., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Jalali, S.K., Jomehzadeh, E. and Pugno, N.M. (2016), "Influence of out-of-plane defects on vibration analysis of graphene: Molecular Dynamics and Non-local Elasticity approaches", Superlattices Microstruct., 91, 331-344. https://doi.org/10.1016/j.spmi.2016.01.023.
- Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
- Jiang, J.W., Wang, J.S. and Li, B. (2009), "Young's modulus of graphene: A molecular dynamics study", Phys. Rev. B, 80(11), 113405-113408. https://doi.org/10.1103/physrevb.80.113405
- Kapoor, H. and Kapania, R. (2012), "Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates", Compos. Struct., 94(12), 3434-3447. https://doi.org/10.1016/j.compstruct.2012.04.028.
- Karami, B., Janghorban, M., Shahsavari, D. and Touns, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216 https://doi.org/10.12989/scs.2018.27.2.201.
- Kiendl, J., Bletzinger, K. U., Linhard, J. and Wuchner, R. (2009), "Isogeometric shell analysis with Kirchhoff-Love elements", Comput. Method Appl. M., 198(49-52), 3902-3914. https://doi.org/10.1016/j.cma.2009.08.013.
- Kitipornchai, S., He, X. Q. and Liew, K. M. (2005), "Continuum model for the vibration of multilayered graphene sheets", Phys. Rev. B., 72(7), 075443-Published 29 August 2005. https://doi.org/10.1103/physrevb.72.075443
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT- and Graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21(5), 1085-1103. http://dx.doi.org/10.12989/scs.2016.21.5.1085.
- Kuzhir, P., Volynets, N., Maksimenko, S., Kaplas, T. and Svirko, Y. (2013), "Multilayered graphene in Ka-band: Nanoscale coating for aerospace applications", J. Nanosci. Nanotechnol., 13(8), 5864-5867. https://doi.org/10.1166/jnn.2013.7551.
- Kvashnin, A.G., Sorokin, P.B., Kvashnin, D.G. (2010), "The Theoretical Study of Mechanical Properties of Graphene Membranes", Fullerenes, Nanotubes, and Carbon Nanostructures, 18(4-6), 497-500. https://doi.org/10.1080/1536383X.2010.488160
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lee, C., Wei, X.D., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. DOI: 10.1126/science.1157996.
- Le-Manh, T. and Lee, J. (2014), "Postbuckling of laminated composite plates using NURBS-based isogeometric analysis", Compos. Struct., 109, 286-293. https://doi.org/10.1016/j.compstruct.2013.11.011.
- Le-Manh, T., Luu-Anh, T. and Lee, J. (2016), "Isogeometric analysis for flexural behavior of composite plates considering large deformation with small rotations", Mech. Adv. Mater. Struct., 23(3), 328-336. https://doi.org/10.1080/15376494.2014.981616.
- Lim, C.W.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241(5), 839-855. https://doi.org/10.1006/jsvi.2000.3330.
- Liu, F., Ming, P. and Li, J. (2007), "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76(6), 064120- 064127. https://doi.org/10.1103/physrevb.76.064120
- Liu, G.R. (2003), "Meshfree Methods: Moving Beyond the Finite Element Method", (CRC Press, USA).
- Liu, X., Metcalf, T.H., Robinson, J.T., Houston, B.H. and Scarpa, F. (2012), "Shear modulus of monolayer graphene prepared by chemical vapor deposition", Nano. Lett., 12(2), 1013-1017. https://doi.org/10.1021/nl204196v.
- Ma, J., Alfe, D., Michaelides, A. and Wang, E. (2009), "Stone-Wales defects in graphene and other planar sp 2 -bonded materials", Phys. Rev. B, 80, 1-4.
- Malagu, M., Benvenuti, E. and Simone, A. (2012), "A Finite element and b-spline methods for one-dimensional non-local elasticity", Proceedings of the ECCOMAS 2012: 6th European Congress on computational methods in applied sciences and engineering, September 2012, Vienna University of Technology, Vienna, Austria.
- Marina, P.E., Ali, G.A.M., See, L.M., Teo, E.Y.L., Ng, E.P. and Chong, K.F. (2016), "In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement", Arab. J. Chem., https://doi.org/10.1016/j.arabjc.2016.02.006.
- Marin, M. (2008), "Weak Solutions in Elasticity of Dipolar Porous Materials", Math. Probl. Eng., 2008, http://dx.doi.org/10.1155/2008/158908, 1-8.
- Marin, M. (2016), "An approach of a heat-flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2.
- Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Bound. Value Probl., 2016(1), 1-19. https://doi.org/10.1186/s13661-016-0620-9.
- Martinez-Asencio, J. and Caturla, M.J. (2015), "Molecular dynamics simulations of defect production in graphene by carbon irradiation", Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact with Mater. Atoms, 352, 225-228. https://doi.org/10.1016/j.nimb.2014.12.010.
- Min, K. and Aluru, N.R. (2011), "Mechanical properties of graphene under shear deformation", Appl. Phys. Lett., 98(1), 013113. https://doi.org/10.1063/1.3534787
- Mirakhory, M., Khatibi, M.M. and Sadeghzadeh, S. (2018), "Vibration analysis of defected and pristine triangular single-layer graphene nanosheets", Curr. Appl. Phys., 18(11), 1327-1337. https://doi.org/10.1016/j.cap.2018.07.014.
- Mirzaei, M. and Kiani, Y. (2017), "Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation", Compos. Struct.., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057.
- Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with Graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.
- Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Method. Appl. M., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
- Neek-Amal, M., Peeters, F.M. (2010), "Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene", Phys. Rev. B, 81(23), 235437. https://doi.org/10.1103/physrevb.81.235437
- Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071.
- Norouzzadeh, A. and Ansari, R. (2018), "Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects", Thin-Wall. Struct., 127, 354-372. https://doi.org/10.1016/j.tws.2017.11.040.
- Piegl, L. and Tiller, W. (1997), "The NURBS Book", (Monographs in Visual Communication) (Springer-Verlag, New York).
- Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039.
- Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.
- Rajasekaran, G., Narayanan, P. and Parashar, A. (2016), "Effect of point and line defects on mechanical and thermal properties of graphene", Crit. Rev. Solid State Mater. Sci., 41(1), 47-71. https://doi.org/10.1080/10408436.2015.1068160
- Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17(3), 864-870. https://doi.org/10.1088/0957-4484/17/3/042
- Ribeiro, P. and Chuaqui, T.R.C. (2019), "Non-linear modes of vibration of single-layer non-local graphene sheets", Int. J. Mech. Sci., 150, 727-743. https://doi.org/10.1016/j.ijmecsci.2018.10.068.
- Roh, H.Y. and Cho, M. (2004), "The application of geometrically exact shell elements to B-spline surfaces", Comput. Method Appl. M., 193(23-26), 2261-2299. https://doi.org/10.1016/j.cma.2004.01.019.
- Rouhi, S., Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Phys. E. Low-Dimensional Syst. Nanostructures, 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020.
- Sadeghi, M. and Naghdabadi, R. (2010), "Nonlinear vibrational analysis of single-layer graphene sheets", Nanotechnology, 21(10).
- Sakhaee-Pour, A. (2009), "Elastic buckling of single-layered graphene sheet", Comput. Mater. Sci., 45(2), 266-270. https://doi.org/10.1016/j.commatsci.2008.09.024.
- Sakhaee-Pour A. (2009), "Elastic properties of single-layered graphene sheet", Solid State Commun., 149(1-2), 91-95. https://doi.org/10.1016/j.ssc.2008.09.050.
- Sakhaee-Pour, A., Ahmadian, M.T. and Naghdabadi, R. (2008), "Vibrational analysis of single-layered graphene sheets", Nanotechnology, 19(8), 85702. doi:10.1088/0957-4484/19/8/085702
- Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
- Shen, L., Shen, H.S. and Zhang, C.L. (2010), "Temperature-dependent elastic properties of single layer graphene sheets", Mater. Des., 31(9), 4445-4449. https://doi.org/10.1016/j.matdes.2010.04.016.
- Siddique, J.A., Attia, N.F. and Geckeler, K.E. (2015), "Polymer nanoparticles as a tool for the exfoliation of graphene sheets", Mater. Lett., 158(1), 186-189. https://doi.org/10.1016/j.matlet.2015.05.134
- Sobhy, M. (2014), "Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium", Phys. E. Low-Dimensional Syst. Nanostructures, 56, 400-409. https://doi.org/10.1016/j.physe.2013.10.017.
- Soleimani A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of Graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517.
- Soleimani, A., Naei, M.H. and Mashhadi, M.M. (2017), "Buckling analysis of graphene sheets using nonlocal isogeometric finite element method for NEMS applications", Microsyst. Technol., 23(7), 2859-2871. https://doi.org/10.1007/s00542-016-3098-6.
- Song M, Kitipornchai S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
- Stan, G., Ciobanu, C.V., Parthangal, P.M. and Cook, R.F. (2007), "Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires", Nano Lett., 7(12), 3691-3697. https://doi.org/10.1021/nl071986e.
- Stuart, S.J., Tutein, A.B. and Harrison, J.A. (2000), "A reactive potential for hydrocarbons with intermolecular interactions", J. Chem. Phys., 112, 6472-6487. https://doi.org/10.1063/1.481208.
- Subramaniyan, A.K. and Sun, C.T. (2008), "Continuum interpretation of virial stress in molecular simulations", J. Solids Struct., 45(14-15), 4340-4346. https://doi.org/10.1016/j.ijsolstr.2008.03.016.
- Sun, S., Wang, C., Chen, M. and Zheng, J. (2013), "A novel method to control atomic defects in graphene sheets by selective surface reactions", Appl. Surf. Sci., 283, 566-570. https://doi.org/10.1016/j.apsusc.2013.06.146.
- Sun, X.Y., Hu, H., Caob, C. and Xua, Y.J. (2015), "Anisotropic vacancy-defect-induced fracture strength loss of graphene", RSC Adv., 5(2), 13623-13627. https://doi.org/10.1039/C4RA14044C
- Sun, X., Fu, Z. and Xia, M. (2014), "Effects of vacancy defect on the tensile behavior of graphene", Theor. Appl. Mech. Lett., 4(5), 51002. https://doi.org/10.1063/2.1405102.
- Tasis, D., Papagelis, K., Spiliopoulos, P. and Galiotis, C. (2013), "Efficient exfoliation of graphene sheets in binary solvents", Mater. Lett., 94, 47-50. https://doi.org/10.1016/j.matlet.2012.12.027
- Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2018), "The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic", Steel Compos. Struct., 29(5), 647-657. https://doi.org/10.12989/scs.2018.29.5.647.
- Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Method. Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282.
- Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/Polymer/Fiber laminated nanocomposite structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
- Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 1-55.
- Tran, L.V., Lee, J., Nguyen-Van, H., Nguyen-Xuan, H. and Wahab, M.A. (2015), "Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory", Int. J. Non-Linear Mech., 72, 42-52. https://doi.org/10.1016/j.ijnonlinmec.2015.02.007.
- Tran, L.V., Phung-Van, P., Lee, J., Wahab, M.A. and Nguyen-Xuan, H. (2016), "Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates", Compos. Struct., 140, 655-667. https://doi.org/10.1016/j.compstruct.2016.01.001.
- Tsai, D.H. (1979), "The virial theorem and stress calculation in molecular dynamics", J. Chem. Phys., 70, 1375-1382. https://doi.org/10.1063/1.437577.
- Tsai, J.L. and Tu, J.F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des., 31(1), 194-199. https://doi.org/10.1016/j.matdes.2009.06.032.
- Udupa, A. and Martini, A. (2011), "Model predictions of shear strain-induced ridge defects in graphene", Carbon, 49(11), 3571-3578. https://doi.org/10.1016/j.carbon.2011.04.057.
- Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008.
- Wei, Y., Wang, B., Wu, J., Yang, R. and Dunn, M.L. (2012), "Bending rigidity and Gaussian bending stiffness of single-layered graphene", Nano Lett., 13(1), 26-30. https://doi.org/10.1021/nl303168w.
- Wenhu Wu, Y. D.,Yin, J., Xie, W., Zhang, W., Wu, B., Jiang, Y. and Zhang, P. (2015), "Effect of vacancy distribution on the relaxation properties of graphene : A molecular dynamics study", IET Micro. Nano Lett., 10(12).
- Xie, G., Shen, Y., Wei, X., Yang, L., Xiao, H., Zhong, J. and Zhang, G. (2014), "A bond-order theory on the phonon scattering by vacancies in two-dimensional materials", Electron. Spintron. devices, 1-23. https://doi.org/10.1038/srep05085.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yanovsky, Y.G., Nikitina, E.A., Karnet, Y.N., Nikitin, S.M. (2009), "Quantum mechanics study of the mechanism of deformation and fracture of graphene", Phys. Mesomech., 12(5-6), 254-262. https://doi.org/10.1016/j.physme.2009.12.007.
- Yu, T.T., Yin, S., Bui, T.Q. and Hirose, S. (2015), "A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates", Finite Elem. Anal. Des., 96, 1-10. https://doi.org/10.1016/j.finel.2014.11.003.
- Zhang, Y., Chen, Y., Zhou, K. and Liu, C. (2009), "Improving gas sensing properties of graphene by introducing dopants and defects : a first-principles study", Nanotechnology, 20(18).
- Zhang, Y., Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2015), "Nonlocal continuum model for vibration of single-layered graphene sheets based on the element-free kp-Ritz method", Eng. Anal. Bound. Elem., 56, 90-97. https://doi.org/10.1016/j.enganabound.2015.01.020.
- Zhou, M. (2003), "A new look at the atomic level virial stress: on continuum-molecular system equivalence", P. Roy. Soc. A-Math. Phy., 459(2), 2347-2392. https://doi.org/10.1098/rspa.2003.1127.