과제정보
연구 과제 주관 기관 : King Abdulaziz University
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DF-062-135-1441). The authors, therefore, acknowledge with thanks DSR technical and financial support.
참고문헌
- Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Akbas, S.D. (2018a), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
- Akbas, S.D. (2019), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
- Almitani, K.H., Abdalrahmaan, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
- Ascione, A. and Gherlone, M. (2018), "Nonlinear static response analysis of sandwich beams using the Refined Zigzag Theory", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636218795381.
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mecha, Sci. Technol., 25(5), 1129. https://doi.org/10.1007/s12206-011-0302-6.
- Basaglia, C., Camotim, D. and Silvestre, N. (2013), "Post-buckling analysis of thin-walled steel frames using generalised beam theory (GBT)", Thin-Wall. Struct., 62, 229-242. https://doi.org/10.1016/j.tws.2012.07.003.
- Chen, Z., Li, J., Sun, L. and Li, L.Y. (2019), "Flexural buckling of sandwich beams with thermal-induced non-uniform sectional properties", J. Build.Eng., 25, 100782. https://doi.org/10.1016/j.jobe.2019.100782.
- Chowdhury, S.R. and Reddy, J.N. (2019), "Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core", Compos. Struct., 226, 111228. https://doi.org/10.1016/j.compstruct.2019.111228.
- Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2019), "Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory", Thin-Wall. Struct., 140, 304-317. https://doi.org/10.1016/j.tws.2019.03.031.
- Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013a), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014b), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
- Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019b), "Periodic and nonperiodic modes on postbuckling and nonlinear vibration of beams attached with nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026
- Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads" Steel Compos. Struct.
- Eltaher, M.A., Mohamed, S.A. and Melaibari, M. (2020), "Static stability of a unified composite beams under varying axial loads", Thin-Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
- Emam, S.A. (2011), "Analysis of shear-deformable composite beams in postbuckling", Compos. Struct., 94(1), 24-30. https://doi.org/10.1016/j.compstruct.2011.07.024.
- Emam, S. and Eltaher, M.A. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. https://doi.org/10.1016/j.compstruct.2016.05.029.
- Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Scie., 8(11), 2238. https://doi.org/10.3390/app8112238
- Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin-Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Jun, L., Xiang, H. & Xiaobin, L. (2016), "Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method", Compos. Struct., 158, 308-322. https://doi.org/10.1016/j.compstruct.2016.09.012.
- Jun, L., Li, J. and Xiaobin, L. (2017), "A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory", Int. J. Mech. Sci., 133, 100-111. https://doi.org/10.1016/j.ijmecsci.2017.07.059.
- Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges", Int. J. Solids Struct., 42(14), 4220-4238. https://doi.org/10.1016/j.ijsolstr.2004.12.011.
- Karamanli, A. and Aydogdu, M. (2019), "Buckling of laminated composite and sandwich beams due to axially varying in-plane loads", Compos. Struct., 210, 391-408. https://doi.org/10.1016/j.compstruct.2018.11.067.
- Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
- Li, C., Shen, H.S. and Wang, H. (2019), "Nonlinear bending of sandwich beams with functionally graded negative Poisson's ratio honeycomb core", Compos. Struct., 212, 317-325. https://doi.org/10.1016/j.compstruct.2019.01.020
- Li, W., Ma, H. and Gao, W. (2019), "A higher-order shear deformable mixed beam element model for accurate analysis of functionally graded sandwich beams", Compos. Struct., 221, 110830. https://doi.org/10.1016/j.compstruct.2019.04.002.
- MalekzadehFard, K., Gholami, M., Reshadi, F. and Livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034.
- Martins, A.D. and Silvestre, N. (2019), "Modal analysis of the post-buckling behaviour of cylindrical steel panels under compression: Imperfection sensitivity and local2 interaction", Thin-Wall. Struct., 144, 106345. https://doi.org/10.1016/j.tws.2019.106345.
- Meirovitch, L. (2010), Methods of analytical dynamics, Courier Corporation
- Meyer-Piening, H. R. (2006), "Sandwich plates: Stresses, deflection, buckling and wrinkling loads-A case study", J. Sandw. Struct. Mater., 8(5), 381-394. https://doi.org/10.1177/1099636206064825
- Mohamed, N., Eltaher, M. A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793.
- Nasrekani, F.M. and Eipakchi, H. (2019), "Analytical solution for buckling analysis of cylinders with varying thickness subjected to combined axial and radial loads", Int. J. Pressure Vessels Piping, 172, 220-226. https://doi.org/10.1016/j.ijpvp.2019.03.036.
- Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
- Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
- Osmani, A. and Meftah, S.A. (2018), "Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed", Eng. Struct., 165, 76-87. https://doi.org/10.1016/j.engstruct.2018.03.009.
- Panda, S.K. and Ramachandra, L.S. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads", Int. J. Mech. Sci., 52(6), 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009.
- Salami, S.J. and Dariushi, S. (2018), "Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation", Steel Compos. Struct., 27(3), 273-283. https://doi.org/10.12989/scs.2018.27.3.273.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1750007. https://doi.org/10.1142/S1758825117500077.
- Sayyad, A.S. and Ghugal, Y.M. (2019a), "A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219840980.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
- Shen, Q., Wang, J., Wang, Y. and Wang, F. (2019), "Analytical modelling and design of partially CFRP-wrapped thin-walled circular NCFST stub columns under axial compression", Thin-Wall. Struct., 144, 106276. https://doi.org/10.1016/j.tws.2019.106276.
- Silvestre, N. and Camotim, D. (2002a), "First-order generalised beam theory for arbitrary orthotropic materials", Thin-Wall. Struct., 40(9), 755-789. https://doi.org/10.1016/S0263-8231(02)00025-3.
- Silvestre, N. and Camotim, D. (2002b), "Second-order generalised beam theory for arbitrary orthotropic materials", Thin-Wall. Struct., 40(9), 791-820. https://doi.org/10.1016/S0263-8231(02)00026-5.
- Silvestre, N. (2007), "Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes", Thin-Wall. Struct., 45(2), 185-198. https://doi.org/10.1016/j.tws.2007.02.001.
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017.
- Singh, S.J. and Harsha, S.P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Technol., 33(4), 1761-1767. https://doi.org/10.1007/s12206-019-0328-8.
- Wang, W. and Shenoi, R.A. (2004), "Analytical solutions to predict flexural behavior of curved sandwich beams", J. Sandw. Struct. Mater., 6(3), 199-216. https://doi.org/10.1177/1099636204032855.
피인용 문헌
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.311
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.293
- Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core vol.36, pp.4, 2020, https://doi.org/10.1007/s00366-020-01023-w
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2020, https://doi.org/10.12989/gae.2021.24.1.091
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.545
- Heat-Affected Zone and Mechanical Analysis of GFRP Composites with Different Thicknesses in Drilling Processes vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142246
- Vibration Analysis of a multi core sandwich composite beam with cutouts-A critical investigation vol.8, pp.7, 2020, https://doi.org/10.1088/2053-1591/ac0deb
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697