DOI QR코드

DOI QR Code

Optimization of steel-concrete composite beams considering cost and environmental impact

  • Tormen, Andreia Fatima (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering) ;
  • Pravia, Zacarias Martin Chamberlain (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering) ;
  • Ramires, Fernando Busato (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering) ;
  • Kripka, Moacir (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering)
  • 투고 : 2019.08.03
  • 심사 : 2019.12.13
  • 발행 : 2020.02.25

초록

In the optimized structure sizing, the optimization methods are inserted in this context in order to obtain satisfactory solutions, which can provide more economical structures, besides allowing the consideration of the factors related to the environmental impacts in the structural design. This work proposes a mathematical model for the optimization of steel-concrete composite beams aiming to minimize the monetary cost and the environmental impact, using the Harmonic Search optimization method. Discrete variables were the dimensions of the steel profiles and the thickness of the collaborating slab of the composite steel-concrete beam. The proposed model was implemented in Fortran programming language and based on improvements in the structure of the optimization method proposed by Medeiros and Kripka (2017). To prove the effectiveness and applicability of the model, as well as the Harmonic Search method, analyzes were performed with different configurations of steel-concrete composite beams, in order to provide guidelines that make the use of these systems more streamlined. In general, the Harmonic Search optimization method has proved to be efficient in the search for the optimized solutions, as well as important considerations on the optimization of the monetary and environmental costs of steel-concrete composite beams were obtained from the developed examples.

키워드

참고문헌

  1. Alankar, K. and Chaudhary, S. (2012), "Cost optimization of composite beams using genetic algorithm and artificial neural network", Proceedings of the 2012 International Conference on Computer Technology and Science, August 18-19, New Delhi.
  2. Adeli, H. and Kim, H. (2001), "Cost optimization of composite floors using neural dynamics model", Commun. Numer. Method. Eng., 17(11), 771-787. https://doi.org/10.1002/cnm.448
  3. BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS - ABNT (2013), NBR 5884: Profile I structural steel welded by electric arc - General requirements, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
  4. BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS-ABNT (2000), NBR 6120: Loads for the calculation of building structures, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
  5. BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS TECNICAS - ABNT (2008), NBR 8800: Design of steel structures and mixed structures of steel and concrete of buildings, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
  6. Camp, C.V. and Huq, F. (2013), "$CO_2$ and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm", Eng. Struct., 48, 363-372. https://doi.org/10.1016/j.engstruct.2012.09.004.
  7. Camp, C.V. and Assadollahi, A. (2013), "$CO_2$ and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm", Struct. Multidiscip. O., 48(2), 411- 426. https://doi.org/10.1007/s00158-013-0897-6.
  8. Carbonell, A., Yepes, V. and Gonzalez-vidosa, F. (2011), "Comprehensive search for surroundings applied to the economic design of reinforced concrete vaults", International Magazine of Numerical Methods for Calculus and Design in Engineering, 27(3), 227-235.
  9. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141
  10. Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163.
  11. Doltsinis, I. and Kang, Z. (2004), "Robust design of structures using optimization methods", Comput. Method. Appl. M., 193(23-26), 2221-2237. https://doi.org/10.1016/j.cma.2003.12.055.
  12. Eskandari, H. and Korouzhdeh, T. (2016), "Cost optimization and sensitivity analysis of composite beam", Civil Eng. J., 2(2), 52-62. https://doi.org/10.28991/cej-2016-00000012
  13. Fabeane, R., Kripka, M. and Pravia, Z.M.C. (2017), "Composite bridges: Study of parameters of optimized design", Int. J. Bridge Eng., 5, 1-20.
  14. García-Segura, T. and Yepes, V. (2016), "Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, $CO_2$ emissions, and safety", Eng. Struct., 125, 325-336. https://doi.org/10.1016/j.engstruct.2016.07.012.
  15. Geem, Z.W. (2010), "State-of-the-art in the structure of harmony search algorithm": Recent Advances In Harmony Search Algorithm", Studies in Computational Intelligence, 270, 1-10.
  16. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
  17. Geem, Z.W. and Sim, K. (2010), "Parameter-setting-free harmony search algorithm", Appl. Math. Comput., 217(8), 3881-3889. https://doi.org/10.1016/j.amc.2010.09.049.
  18. Gilbert, P., Wilson, P., Walsh, C. and Hodgson, P. (2017), "The role of material efficiency to reduce $CO_2$ emissions during ship manufacture: A life cycle approach", Marine Policy, 75, 227-237. https://doi.org/10.1016/j.marpol.2016.04.003.
  19. Gocal, J. and Dursova, A. (2012), "Optimization of transversal disposition of steel and concrete composite road bridges", Procedia Eng., 40, 125-130. https://doi.org/10.1016/j.proeng.2012.07.067.
  20. Jones, M.T. (2003), Artificial Intelligence Application Programming, Charles River Media, Hingham, Massachussets, USA.
  21. Kaveh, A., Bakhshpoori, T. and Barkhori, M. (2014), "Optimum design of multi-span composite box girder bridges using cuckoo search algorithm", Steel Compos. Struct., 17(5), 705-719. https://doi.org/10.1007/978-3-319-48012-1_3.
  22. Klansek, U. and Kravanja, S. (2006a), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 1: Self-manufacturing cost estimation of composite and steel structures", J. Constr. Steel Res., 62(5), 434-448. https://doi.org/10.1016/j.jcsr.2005.08.005.
  23. Klansek, U. and Kravanja, S. (2006b), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 2: Optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses", J. Constr. Steel Res., 62(5), 449-462. ttps://doi.org/10.1016/j.jcsr.2005.08.006.
  24. Korouzhdeh, T., Eskandari-Naddaf, H. and Gharouni-Nik, M. (2017), "An improved ant colony model for cost optimization of composite beams", Appl. Artif. Intel., 31(1), 44-63.
  25. Kravanja, S. and Silih, S. (2003), "Optimization based comparison between composite I beams and composite trusses", J. Constr. Steel Res., 59(5), 609-625. tps://doi.org/10.1016/S0143-974X(02)00045-7.
  26. Kravanja, S.; Zula, T. and Klansek, U. (2017), "Multi-parametric MINLP optimization study of a composite I beam floor system", Eng. Struct., 130, 316-335. https://doi.org/10.1016/j.engstruct.2016.09.012.
  27. Kripka, M., Medeiros, G.F. and Lemonge, A.C.C. (2015), "Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures", Eng. Struct., 99, 311-318. https://doi.org/10.1016/j.engstruct.2015.05.001.
  28. Lagaros, N.D., Fragiadakis, M., Papadrakakis, M. and Tsompanakis, Y. (2006), "Structural optimization: a tool for evaluating seismic design procedures", Eng. Struct., 28(12), 1623-1633. https://doi.org/10.1016/j.engstruct.2006.02.014.
  29. Lezgy-Nazargah, M. and Kafi, L. (2015), "Analysis of composite steel-concrete beams using a refined high-order beam theory", Steel Compos. Struct., 18(6), 1353-1368. https://doi.org/10.12989/scs.2015.18.6.1353.
  30. Li, J., Huo, Q., Li, X. and Shao, K.X. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577.
  31. Luoa, Y., Li A. and Kang, Z. (2011), "Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties", Eng. Struct., 33, 2110-2119. https://doi.org/10.1016/j.engstruct.2011.02.040.
  32. Luo, D., Zhang, Z. and Li, B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. https://doi.org/10.12989/scs.2019.31.1.027.
  33. Medeiros, G.F. de and Kripka, M. (2014), "Optimization of reinforced concrete columns according to different environmental impact assessment parameters", Eng. Struct., 59, 185-194. https://doi.org/10.1016/j.engstruct.2013.10.045.
  34. Medeiros, G.F. and Kripka, M. (2017), "Modified harmony search and its application to cost minimization of RC columns", Adv. Comput. Design, 2(1), 1-13. DOI: https://doi.org/10.12989/acd.2017.2.1.001.
  35. Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045.
  36. Molina-Moreno, F., Garcia-Segura, T., Marti, J.V. and Yepes, V. (2017), "Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms", Eng. Struct., 134, 205-216. https://doi.org/10.1016/j.engstruct.2016.12.042.
  37. Munck, M. de, Sven de Sutter, S. de, Verbruggen, S., Tysmans, T., Coelho, R.F. (2015), "Multi-objective weight and cost optimization of hybrid composite-concrete beams", Compos. Struct., 134, 369-377. https://doi.org/10.1016/j.compstruct.2015.08.089.
  38. Park, H.S., Kwon, B., Shin, Y., Kim, Y., Hong, T. and Choi, S.W. (2013), "Cost and $CO_2$ emission optimization of steel reinforced concrete columns in high-rise buildings", Energies, 6(11), 5609-5624. https://doi.org/10.3390/en6115609.
  39. Paya-Zaforteza, I, Yepes V., Hospitaler. A and Gonzalez-Vidosa F. (2009), "$CO_2$ - Optimization of Reinforced Concrete Frames by Simulated Annealing", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034.
  40. Paya-Zaforteza, I., Yepes V., Gonzalez-Vidosa F. and Hospitaler. A. (2010), "On the Weibull cost estimation of building frames designed by Simulated Annealing", Meccanica, 45, 693-704. https://doi.org/10.1007/s11012-010-9285-0.
  41. Pelletier, J.L and Vel, S.S (2006), "Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass", Comput. Struct. 84(29-30), 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001.
  42. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, USA.
  43. Reis, A. dos, Albuquerque, E.L., Torsani, F.L., Palermo JR.L. and Sollero, P. (2011), "Computation of moments and stresses in laminated composite plates by the boundary element method", Engineering Analysis with Boundary Elements, 35(1), 105-113. https://doi.org/10.1016/j.enganabound.2010.04.001.
  44. Rosca, V.E., Axinte, E. and Teleman, E.C. (2012), "Practical optimization of composite steel and concrete girders", Buletinul Institutului Politehnic din Iasi, Sectia Constructii. Arhitectura, Tomul LVII, 1, 85-98.
  45. Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Softw., 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001.
  46. Toma, S. and Maeda, J. (2011), "Optimum girder height and minimum sectional area of highway composite girder bridge", Hokuga.
  47. Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civil Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
  48. VoB, S. (2001), "Meta-heuristics: The state of art", Lecture Notes in Computer Science, 2148, 1-23.
  49. Yangjun, L. and Li, A. (2012), "Design optimization of bonded steel-concrete composite beams", World J. Eng., 9(1), 23-30. https://doi.org/10.1260/1708-5284.9.1.23.
  50. Yeo, D. and Potra, F.A. (2015), "Sustainable design of reinforced concrete structures through $CO_2$ emission optimization", J. Struct. Eng., 141(3), 1-7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000888.
  51. Yepes, V. and Medina, J.R. (2006), "Economic heuristic optimization for the heterogeneous fleet VRPHESTW", J. Transportation Eng., 132(4), 303-311. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(303).
  52. Yepes, V., Gonzalez-Vidosa F, Alcala, J. and Villalba, P. (2012), "$CO_2$-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comput. Civil Eng., 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140.
  53. Yepes, V., Marti, J.V. and García-Segura, T. (2015), "Cost and $CO_2$ emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm", Automat. Constr., 49, 123-134. https://doi.org/10.1016/j.autcon.2014.10.013.
  54. Zheng, S., Lou, H., Li, L., Li, Z. and Wang, W. (2011), "Optimization design of steel-concrete composite beams considering bond-slip effect", Adv. Mater. Res., 243-249, 379-382. https://doi.org/10.4028/www.scientific.net/AMR.243-249.379
  55. Zhou, W., Li, S., Huang, Z. and Jiang, L. (2016), "Distortional buckling of I-steel concrete composite beams in negative moment area", Steel Compos. Struct., 20(1), 57-70. https://doi.org/10.12989/scs.2016.20.1.057.