References
- Alankar, K. and Chaudhary, S. (2012), "Cost optimization of composite beams using genetic algorithm and artificial neural network", Proceedings of the 2012 International Conference on Computer Technology and Science, August 18-19, New Delhi.
- Adeli, H. and Kim, H. (2001), "Cost optimization of composite floors using neural dynamics model", Commun. Numer. Method. Eng., 17(11), 771-787. https://doi.org/10.1002/cnm.448
- BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS - ABNT (2013), NBR 5884: Profile I structural steel welded by electric arc - General requirements, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
- BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS-ABNT (2000), NBR 6120: Loads for the calculation of building structures, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
- BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS TECNICAS - ABNT (2008), NBR 8800: Design of steel structures and mixed structures of steel and concrete of buildings, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
-
Camp, C.V. and Huq, F. (2013), "
$CO_2$ and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm", Eng. Struct., 48, 363-372. https://doi.org/10.1016/j.engstruct.2012.09.004. -
Camp, C.V. and Assadollahi, A. (2013), "
$CO_2$ and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm", Struct. Multidiscip. O., 48(2), 411- 426. https://doi.org/10.1007/s00158-013-0897-6. - Carbonell, A., Yepes, V. and Gonzalez-vidosa, F. (2011), "Comprehensive search for surroundings applied to the economic design of reinforced concrete vaults", International Magazine of Numerical Methods for Calculus and Design in Engineering, 27(3), 227-235.
- Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141
- Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163.
- Doltsinis, I. and Kang, Z. (2004), "Robust design of structures using optimization methods", Comput. Method. Appl. M., 193(23-26), 2221-2237. https://doi.org/10.1016/j.cma.2003.12.055.
- Eskandari, H. and Korouzhdeh, T. (2016), "Cost optimization and sensitivity analysis of composite beam", Civil Eng. J., 2(2), 52-62. https://doi.org/10.28991/cej-2016-00000012
- Fabeane, R., Kripka, M. and Pravia, Z.M.C. (2017), "Composite bridges: Study of parameters of optimized design", Int. J. Bridge Eng., 5, 1-20.
-
García-Segura, T. and Yepes, V. (2016), "Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost,
$CO_2$ emissions, and safety", Eng. Struct., 125, 325-336. https://doi.org/10.1016/j.engstruct.2016.07.012. - Geem, Z.W. (2010), "State-of-the-art in the structure of harmony search algorithm": Recent Advances In Harmony Search Algorithm", Studies in Computational Intelligence, 270, 1-10.
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
- Geem, Z.W. and Sim, K. (2010), "Parameter-setting-free harmony search algorithm", Appl. Math. Comput., 217(8), 3881-3889. https://doi.org/10.1016/j.amc.2010.09.049.
-
Gilbert, P., Wilson, P., Walsh, C. and Hodgson, P. (2017), "The role of material efficiency to reduce
$CO_2$ emissions during ship manufacture: A life cycle approach", Marine Policy, 75, 227-237. https://doi.org/10.1016/j.marpol.2016.04.003. - Gocal, J. and Dursova, A. (2012), "Optimization of transversal disposition of steel and concrete composite road bridges", Procedia Eng., 40, 125-130. https://doi.org/10.1016/j.proeng.2012.07.067.
- Jones, M.T. (2003), Artificial Intelligence Application Programming, Charles River Media, Hingham, Massachussets, USA.
- Kaveh, A., Bakhshpoori, T. and Barkhori, M. (2014), "Optimum design of multi-span composite box girder bridges using cuckoo search algorithm", Steel Compos. Struct., 17(5), 705-719. https://doi.org/10.1007/978-3-319-48012-1_3.
- Klansek, U. and Kravanja, S. (2006a), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 1: Self-manufacturing cost estimation of composite and steel structures", J. Constr. Steel Res., 62(5), 434-448. https://doi.org/10.1016/j.jcsr.2005.08.005.
- Klansek, U. and Kravanja, S. (2006b), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 2: Optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses", J. Constr. Steel Res., 62(5), 449-462. ttps://doi.org/10.1016/j.jcsr.2005.08.006.
- Korouzhdeh, T., Eskandari-Naddaf, H. and Gharouni-Nik, M. (2017), "An improved ant colony model for cost optimization of composite beams", Appl. Artif. Intel., 31(1), 44-63.
- Kravanja, S. and Silih, S. (2003), "Optimization based comparison between composite I beams and composite trusses", J. Constr. Steel Res., 59(5), 609-625. tps://doi.org/10.1016/S0143-974X(02)00045-7.
- Kravanja, S.; Zula, T. and Klansek, U. (2017), "Multi-parametric MINLP optimization study of a composite I beam floor system", Eng. Struct., 130, 316-335. https://doi.org/10.1016/j.engstruct.2016.09.012.
- Kripka, M., Medeiros, G.F. and Lemonge, A.C.C. (2015), "Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures", Eng. Struct., 99, 311-318. https://doi.org/10.1016/j.engstruct.2015.05.001.
- Lagaros, N.D., Fragiadakis, M., Papadrakakis, M. and Tsompanakis, Y. (2006), "Structural optimization: a tool for evaluating seismic design procedures", Eng. Struct., 28(12), 1623-1633. https://doi.org/10.1016/j.engstruct.2006.02.014.
- Lezgy-Nazargah, M. and Kafi, L. (2015), "Analysis of composite steel-concrete beams using a refined high-order beam theory", Steel Compos. Struct., 18(6), 1353-1368. https://doi.org/10.12989/scs.2015.18.6.1353.
- Li, J., Huo, Q., Li, X. and Shao, K.X. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577.
- Luoa, Y., Li A. and Kang, Z. (2011), "Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties", Eng. Struct., 33, 2110-2119. https://doi.org/10.1016/j.engstruct.2011.02.040.
- Luo, D., Zhang, Z. and Li, B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. https://doi.org/10.12989/scs.2019.31.1.027.
- Medeiros, G.F. de and Kripka, M. (2014), "Optimization of reinforced concrete columns according to different environmental impact assessment parameters", Eng. Struct., 59, 185-194. https://doi.org/10.1016/j.engstruct.2013.10.045.
- Medeiros, G.F. and Kripka, M. (2017), "Modified harmony search and its application to cost minimization of RC columns", Adv. Comput. Design, 2(1), 1-13. DOI: https://doi.org/10.12989/acd.2017.2.1.001.
- Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045.
- Molina-Moreno, F., Garcia-Segura, T., Marti, J.V. and Yepes, V. (2017), "Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms", Eng. Struct., 134, 205-216. https://doi.org/10.1016/j.engstruct.2016.12.042.
- Munck, M. de, Sven de Sutter, S. de, Verbruggen, S., Tysmans, T., Coelho, R.F. (2015), "Multi-objective weight and cost optimization of hybrid composite-concrete beams", Compos. Struct., 134, 369-377. https://doi.org/10.1016/j.compstruct.2015.08.089.
-
Park, H.S., Kwon, B., Shin, Y., Kim, Y., Hong, T. and Choi, S.W. (2013), "Cost and
$CO_2$ emission optimization of steel reinforced concrete columns in high-rise buildings", Energies, 6(11), 5609-5624. https://doi.org/10.3390/en6115609. -
Paya-Zaforteza, I, Yepes V., Hospitaler. A and Gonzalez-Vidosa F. (2009), "
$CO_2$ - Optimization of Reinforced Concrete Frames by Simulated Annealing", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034. - Paya-Zaforteza, I., Yepes V., Gonzalez-Vidosa F. and Hospitaler. A. (2010), "On the Weibull cost estimation of building frames designed by Simulated Annealing", Meccanica, 45, 693-704. https://doi.org/10.1007/s11012-010-9285-0.
- Pelletier, J.L and Vel, S.S (2006), "Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass", Comput. Struct. 84(29-30), 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, USA.
- Reis, A. dos, Albuquerque, E.L., Torsani, F.L., Palermo JR.L. and Sollero, P. (2011), "Computation of moments and stresses in laminated composite plates by the boundary element method", Engineering Analysis with Boundary Elements, 35(1), 105-113. https://doi.org/10.1016/j.enganabound.2010.04.001.
- Rosca, V.E., Axinte, E. and Teleman, E.C. (2012), "Practical optimization of composite steel and concrete girders", Buletinul Institutului Politehnic din Iasi, Sectia Constructii. Arhitectura, Tomul LVII, 1, 85-98.
- Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Softw., 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001.
- Toma, S. and Maeda, J. (2011), "Optimum girder height and minimum sectional area of highway composite girder bridge", Hokuga.
- Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civil Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.
- VoB, S. (2001), "Meta-heuristics: The state of art", Lecture Notes in Computer Science, 2148, 1-23.
- Yangjun, L. and Li, A. (2012), "Design optimization of bonded steel-concrete composite beams", World J. Eng., 9(1), 23-30. https://doi.org/10.1260/1708-5284.9.1.23.
-
Yeo, D. and Potra, F.A. (2015), "Sustainable design of reinforced concrete structures through
$CO_2$ emission optimization", J. Struct. Eng., 141(3), 1-7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000888. - Yepes, V. and Medina, J.R. (2006), "Economic heuristic optimization for the heterogeneous fleet VRPHESTW", J. Transportation Eng., 132(4), 303-311. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(303).
-
Yepes, V., Gonzalez-Vidosa F, Alcala, J. and Villalba, P. (2012), "
$CO_2$ -optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comput. Civil Eng., 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140. -
Yepes, V., Marti, J.V. and García-Segura, T. (2015), "Cost and
$CO_2$ emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm", Automat. Constr., 49, 123-134. https://doi.org/10.1016/j.autcon.2014.10.013. - Zheng, S., Lou, H., Li, L., Li, Z. and Wang, W. (2011), "Optimization design of steel-concrete composite beams considering bond-slip effect", Adv. Mater. Res., 243-249, 379-382. https://doi.org/10.4028/www.scientific.net/AMR.243-249.379
- Zhou, W., Li, S., Huang, Z. and Jiang, L. (2016), "Distortional buckling of I-steel concrete composite beams in negative moment area", Steel Compos. Struct., 20(1), 57-70. https://doi.org/10.12989/scs.2016.20.1.057.