References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel. Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
- Au, F.T.K. and Cheung, Y.K. (1996), "Free vibration and stability analysis of shells by the isoparametric spline finite strip method", Thin-Wall. Struct., 24(1), 53-82. https://doi.org/10.1016/0263-8231(95)00040-2.
- Bacciocchi, M., Eisenberger, M., Fantuzzi, N., Tornabene, F. and Viola, E. (2015), "Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method", Compos. Struct., 156, 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Benson, P.R. and Hinton, E. (1976), "A thick finite strip solution for static, free vibration and stability problems", Int. J. Numer. Method. Eng., 10(3), 665-678. https://doi.org/10.1002/nme.1620100314.
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel. Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear", Wind. Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel. Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
- Chieslar, J.D. and Ghali, A. (1987), "Solid to shell element geometric transformation", Comput. Struct., 25(3), 451-455. https://doi.org/10.1016/0045-7949(87)90136-2.
- Darilmaz, K. (2017), "Static and free vibration behaviour of orthotropic elliptic paraboloid shells", Steel Compos. Struct., 23(6), 737-746. https://doi.org/10.12989/scs.2017.23.6.737.
- Dawe, D.J. and Wang, S. (1992), "Vibration of shear-deformable beams using a spline function approach", Int. J. Numer. Method. Eng., 33(4), 819-844. https://doi.org/10.1002/nme.1620330410.
- Dvorkin, E.N. and Bathe, K. (1984), "A continuum mechanics based four‐node shell element for general non‐linear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562.
- Eccher, G., Rasmussen, K.J.R. and Zandonini, R. (2008), "Isoparametric spline finite strip method for the bending of perforated plates", Int. J. Numer., Method. Eng., 74(9), 1448-1472 https://doi.org/10.1002/nme.2220.
- El-Haina, F., Bakora, A., Bousahla, A. A., Tounsi, A., and Mahmoud, S. R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Fan, S.C. and Cheung, Y.K. (1983), "Analysis of shallow shells by spline finite strip method", Eng. Struct., 5(4), 255-263. https://doi.org/10.1016/0141-0296(83)90004-4.
- Fan, S.C. and Luah, M.H. (1990), "New spline finite element for analysis of shells of revolution", J. Eng. Mech., 116(3), 709-726. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:3(709).
- Foroughi, H. and Azhari, M. (2014), "Mechanical buckling and free vibration of thick functionally graded plates resting on elastic foundation using the higher order B-spline finite strip method", Meccanica, 49(4), 981-993. http-://doi.org/10.1007/s11012-013-9844-2.
- Hu, X. (1997), "Free vibration analysis of symmetrical cylindrical honeycomb panels by using the finite strip method", J. Vib. Control, 3(1), 19-32. https://doi.org/10.1177%2F107754639700300103/. https://doi.org/10.1177/107754639700300103
- Jabareen, M. and Mtanes, E. (2018), "A solid-shell Cosserat point element for the analysis of geometrically linear and nonlinear laminated composite structures", Finite Elem. Anal. Des., 142, 61-80. https://doi.org/10.1016/j.finel.2017.12.006.
- Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. http://dx.doi.org/10.12989/scs.2016.20.5.1087.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel. Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Kim, H.J., Seo, Y.D., and Youn, S.K. (2010), "Isogeometric analysis with trimming technique for problems of arbitrary complex topology", Comput. Method. Appl. M., 199(45-48), 2796-2812. https://doi.org/10.1016/j.cma.2010.04.015.
- Kwon, Y.B. and Hancock, G.J. (1991), "A nonlinear elastic spline finite strip analysis for thin-walled sections", Thin-Wall. Struct., 12(4), 295-319. https://doi.org/10.1016/0263-8231(91)90031-D.
- Li, W.Y., Tham, L.G., Cheung, Y.K. and Fan, S.C. (1990), "Free vibration analysis of doubly curved shells by spline finite strip method", J. Sound Vib., 140(1), 39-53. https://doi.org/10.1016/0022-460X(90)90905-F.
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel. Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
- Naghsh, A., Saadatpour, M.M. and Azhari, M. (2015), "Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method", Thin-Wall. Struct., 94, 651-662. https://doi.org/10.1016/j.tws.2015.05.015.
- Nguyen, V.P., Anitescu, C., Bordas, S.P., and Rabczuk, T. (2015), "Isogeometric analysis: an overview and computer implementation aspects", Math. Comput. Simulat., 117, 89-116. https://doi.org/10.1016/j.matcom.2015.05.008.
- Pang, F., Li, H., Wang, X., Miao, X. and Li, S. (2018), "A semi analytical method for the free vibration of doubly-curved shells of revolution", Comput. Math. with Appl., 75(9), 3249-3268. https://doi.org/10.1016/j.camwa.2018.01.045.
- Piegl, L. and Tiller, W. (1997), "The NURBS Book", Springer-Verlag Berlin, Heidelberg, Baden-Wurttemberg, Germany.
- Rezaiee-Pajand, M. and Arabi, E. (2016), "A curved triangular element for nonlinear analysis of laminated shells", Compos. Struct., 153, 538-548. https://doi.org/10.1016/j.compstruct.2016.06.052.
- Rypl, D., and Patzak, B. (2012), "From the finite element analysis to the isogeometric analysis in an object oriented computing environment", Adv. Eng. Softw., 44(1), 116-125. https://doi.org/10.1016/j.advengsoft.2011.05.032.
- Shahmohamadi, M.A. and Kabir, M.Z. (2017), "Effects of shear deformation on mechanical and thermo-mechanical nonlinear stability of FGM shallow spherical shells subjected to uniform external pressure", Sci. Iran., 24(2), 584-596. https://dx.doi.org/10.24200/sci.2017.2420.
- Sheikh, A.H. (2004), "An efficient technique to include shear deformation in spline finite strip analysis of composite plates", Int. J. Comput. Methods, 1(3), 491-505. https://doi.org/10.1142/S0219876204000241.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E. and Reddy, J. (2017), "A Numerical Investigation on the Natural Frequencies of FGM Sandwich Shells with Variable Thickness by the Local Generalized Differential Quadrature Method", Appl. Sci., 7(2), 131. https://doi.org/10.3390/app7020131.
- Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.
- Uhm, T.-K. and Youn, S.-K. (2009), "T-spline finite element method for the analysis of shell structures", Int. J. Numer. Method. Eng., 80(4), 507-536. https://doi.org/10.1002/nme.2648.
- Van Erp, G.M. and Menken, C.M. (1990), "Spline finite-strip method in the buckling analyses of thin-walled structures", Commun. Appl. Numer. Methods, 6(6), 477-484. https://doi.org/10.1002/cnm.1630060608.
- Van Erp, G.M., Yuen, S.W. and Swannell, P. (1994), "A new type of B3-spline interpolation", Commun. Appl. Numer. Methods., 10(12), 1013-1020. https://doi.org/10.1002/cnm.1640101207.
- Ventsel, E. and Krauthammer, T. (2001), "Thin Plates and Shells: Theory: Analysis, and Applications", Marcel Dekker, New York City, New York, USA.
- Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput. Method. Appl. M., 331, 427-455. https://doi.org/10.1016/j.cma.2017.09.034.
- Wang, S. and Dawe, D.J. (1999), "Buckling of composite shell structures using the spline finite strip method", Compos. Part B Eng., 30(4), 351-364. https://doi.org/10.1016/S1359-8368(99)00005-0.
- Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.
Cited by
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- A semi-analytical solution for dynamic stability analysis of nanocomposite/fibre-reinforced doubly-curved panels resting on the elastic foundation in thermal environment vol.137, pp.1, 2020, https://doi.org/10.1140/epjp/s13360-021-02190-5