References
- H. T. Hwang and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42-48 (2014). https://doi.org/10.1016/j.coche.2014.04.004
- Z. Yanxing, G. Maoqiong, Z. Yusn, and D. Xueqiang, Thermo-dynamics analysis of hydrogen storage base on compressed gaseous hydrogen, liquid, hydrogen and cryo-compressed hydrogen, Int. J. Hydrogen Energy, 44, 16833-16840 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.207
- M. Kaur and K. Pal, Review on hydrogen storage materials and methods from an electrochemical viewpoint, J. Energy Storage, 23, 234-249 (2019). https://doi.org/10.1016/j.est.2019.03.020
- A. Lahnaoui, C. Wulf, H. Heinrichs, and D. Dalmazzone, Opimizing hydrogen transportation system for mobility via compressed hydrogen trucks, Int. J. Hydrogen Energy, 44, I9302-I9312 (2019).
- T. Sinigaglia, F. Lewiski, M. E. S. Martins, and J. C. M Siluk, Production, storage, fuel stations of hydrogen and its utilization in automotive applications - A review, Int. J. Hydrogen Energy, 42(39), 24597-24611 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.063
- H. T. Hwang, and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 44-48 (2014).
- B. L. Salvi and K. A. Subramanian, Sustainable development of road transportation sector using hydrogen energy system, Renew. Sustain. Energy Rev., 51, 1132-1155 (2015). https://doi.org/10.1016/j.rser.2015.07.030
- J. Andersson and S. Gronkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(23), 11901-11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
- J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(29), 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
- U. Cardella, L. Decker, and H. Klein, Roadmap to economically viable hydrogen liquefaction, Int. J. Hydrogen Energy, 42, 13329-13338 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.068
- B. Sorensen, Hydrogen and fuel cells: Emerging technologies and applications, Academic Press, 65-91 (2018).
- S. Krasae-in, J. H. Stang, and P. Neksa, Development of large-scale hydrogen liquefaction precesses from 1898 to 2009, Int. J. Hydrogen Energy, 35(10), 4524-4533 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.109
- M. S. Sadaghiani and M. Mehrpooya, Introducing and energy analysis of novel cryogenic hydrogen liquefaction process configuration, Int. J. Hydrogen Energy, 42(9), 6033-6050 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.136
- C. Yilmaz, M. Kanoglu, A. Bolatturk, and M. Gadalla, Economics of hydrogen production and liquefaction by geothermal energy, Int. J. Hydrogen Energy, 37, 2058-2069 (2012). https://doi.org/10.1016/j.ijhydene.2011.06.037
- D. O. Berstad, J. H. Stang, and P. Neksa, Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling, Int. J. Hydrogen Energy, 35, 4512-4523 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.001
- G. Valenti and E. Macchi, Proposal of an innovative, high-efficiency large-scale hydrogen liquefier, Int. J. Hydrogen Energy, 33, 3166-3121 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.044
- C. R. Baker and R. L. Shaner, A study of the efficiency of hydrogen liquefaction, Int. J. Hydrogen Energy, 3, 321-334 (1978). https://doi.org/10.1016/0360-3199(78)90037-X
- D. Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 1197-1203 (1972).
- H. W. Wolley, R. B. Scott, and F. G. Brickwedde, Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications, J. Res. Nat. Bur. Std., 41, 379-475 (1948). https://doi.org/10.6028/jres.041.037
- C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, A cubic equation of state with a new alpha function and new mixing rule, Fluid Phase Equilib., 69(10), 33-50 (1991). https://doi.org/10.1016/0378-3812(91)90024-2
- T. F. Edgar and D. M. Himmelbrau, Optimization of Chemical Processes, McGraw-Hill Book Company, (1997).
- W. Wagner, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, 13(8), 470-482 (1973). https://doi.org/10.1016/0011-2275(73)90003-9
- A. Van Itterbeek, K. Staes, O. Verbeke, and F. Theeuwes, Vapour pressure of saturated liquid methane, Physica, 30(10), 1896-1900 (1964). https://doi.org/10.1016/0031-8914(64)90068-0
- R. D. Goodwin, H. M. Roder, and G. C. Straty, Thermophysical Properties of Ethane, from 90 to 600 K at Pressures to 700 bar, Boulder, Colorado: Dept. of Commerce, National Bureau of Standards, Institute for Basic Standards, Cryogenics Division (1976).
- L. I. Dana, A. C. Jenkins, H. E. Burdick, and R. C. Timm, Thermodynamic properties of butane, isobutane, and propane, Refrig. Eng., 12(12), 387-405 (1926).
- P. Donaubauer, U. Cardella, L. Decker, and H. Klein, Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction, Chem. Eng. Technol., 42(3), 669-679 (2019). https://doi.org/10.1002/ceat.201800345
- I. Lee and I. Moon. Strategies for process and size selection of natural gas liquefaction processes: Specific profit portfolio approach by economic based optimization, Ind. Eng. Chem. Res., 57(17), 5845-5857 (2017).
- K. Vink and R. Nagelvoort, 3.6 Comparison of baseload liquefaction processes, in International Conference on Liquefied Natural Gas, Perth, Australia (1998).
- Y. E. Yuksel, M. Ozturk, and I. Dincer, Analysis and assessment of a novel hydrogen liquefaction process, Int. J. Hydrogen Energy, 42(16), 11429-11438 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.064