과제정보
연구 과제 주관 기관 : University of Kashan
The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support, and the University of Kashan for supporting this work by Grant No. 682561/20.
참고문헌
- Abazid, M.A. and Sobhy, M. (2018), "Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory", Microsyst. Technol., 24(2), 1227-1245. https://doi.org/10.1007/s00542-017-3492-8
- Arefi, M. and Zenkour, A.M. (2016), "Free vibration wave propagation and tension analyses of a sandwich micro nano rod subjected to electric potential using strain gradient theory", Mater. Res. Exp., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
- Arefi, M. and Zenkour, A.M. (2017a), "Effect of thermos magneto- electromechanical fields on the bending behaviors of a three-layered nano plate based on sinusoidal shear deformation plate theory", J. Sand. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497
- Arefi, M. and Zenkour, A.M. (2017b), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart. Struct. Syst., Int. J., 19(6), 695-703. https://doi.org/10.12989/sss.2017.19.6.695
- Arefi, M. and Zenkour, A.M. (2017c), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
- Barati, M.R. and Zenkour, A.M. (2017), "Investigating postbuckling of geometrically imperfect metal foam nano beams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008
- Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aero. Sci. Tech., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020
- Dong, Y.H., He, L.W., Wang, L., Li, Y.H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study", Aero. Sci. Tech., 82-83, 466-478. https://doi.org/10.1016/j.ast.2018.09.037
- Ebrahimi, F. and Barati, M.R. (2019), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., Int. J., 7(1), 63-75. https://doi.org/10.12989/anr.2019.7.1.063
- Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
- Fakhari, V., Ohadi, A. and Yousefian, P. (2011), "Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layer in thermal environment", Compos. Struct., 93, 2310-2321. https://doi.org/10.1016/j.compstruct.2011.03.019
- Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039
- Farokhi, H. and Ghayesh, M.H. (2018), "Modified couple stress theory in orthogonal curvilinear coordinates", Acta. Mech., 230(3), 851-869. https://doi.org/10.1007/s00707-018-2331-z
- Gao, K., Gao, W., Chen, D. and Yang, J. (2018a), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Comp. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013
- Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018b), "Chongmin Song; Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin-wall. Struct. 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039
- Gao, K., Huang, Q., Kitipornchai, S. and Yang, J. (2019), "Nonlinear dynamic buckling of functionally graded porous beams", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2019.1567888
- Ghasemi, A.R. and Meskini, M. (2019), "Free vibration analysis of porous laminated rotating circular cylindrical shells", J. Vib. Control, 25(18), 2494-2508. https://doi.org/10.1177/1077546319858227
- Ghayesh, M.H., Farokhi, H., Hussain, S., Gholipour, A. and Arjomandi, M. (2017), "A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium", Microsyst. Technol., 23(8), 3281-3299. https://doi.org/10.1007/s00542-016-3096-8
- Ghorbanpour Arani, A. and Zamani, M.H. (2018), "Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arab. J. Sci. Eng., 43(9), 4675-4688. https://doi.org/10.1007/s13369-017-3035-8
- Ghorbanpour Arani, A., Rousta Navi, B., Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory", J. Sound. Vib., 331, 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
- Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023
- Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezo electric micro plate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009
- Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
- Mao, J.J. and Zhang, W. (2018), "Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation", Compos. Struct., 203, 551-565. https://doi.org/10.1016/j.compstruct.2018.06.076
- Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
-
Mohammadimehr, M. and Rostami, R. (2017), "Bending buckling and forced vibration analysis of nonlocal nano compsite microplate using TSDT considering MEE properties dependent to various volume fractions of
$CoFe_{2}O_{4}-BaTiO_{3}$ ", J. Theo. Appl. Mech., 55(3), 853-868. https://doi.org/10.15632/jtam-pl.55.3.853 - Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control, 22(7), 1790-1807. https://doi.org/10.1177/1077546314544513
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Surface stress effect on the nonlocal biaxial buckling and bending analysis of polymeric piezoelectric nanoplate reinforced by CNT using eshelby-mori-tanaka approach", J. Solid Mech., 7(2), 173-190.
- Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic microplate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Mathe. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9
- Mohammadimehr, M., BabaAkbar, H.Z., Parakandeh, A. and Ghorbanpour Arani, A. (2017a), "Vibration analysis of doublebonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields", Struct. Eng. Mech., Int. J., 64(3), 361-379. https://doi.org/10.12989/sem.2017.64.3.361
- Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017b), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622
- Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2017c), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded singlewalled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Structu., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507
- Mohammadimehr, M., Okhravi, S.V., Akhavan Alavi, S.M., (2018), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177/1077546316664022
- Mohandes, M. and Ghasemi, A.R. (2016), "Modified couple stress theory and finite strain assumption for nonlinear free vibration and bending of micro nano laminated composite Euler-Bernoulli beam under thermal loading", Part C. J. Mech. Eng. Sci., 231(21), 4044-4056. https://doi.org/10.1177/0954406216656884
- Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008
- Newaz, G., Mayeed, M. and Rasul, A. (2016), "Characterization of balsa wood mechanical properties required for continuum damage mechanics analysis", J. Mater. Design. Appl., 230(1), 206-218. https://doi.org/10.1177/1464420714564711
- Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, New Jersey, USA.
- Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. https://doi.org/10.1016/j.compstruct.2015.08.125
- Sasmal, S., Ravivarman, N., Sindu, B.S. and Vignesh, K. (2017), "Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading", Compos. Part A. Appl. Sci. Manufact., 100, 227-243. https://doi.org/10.1016/j.compositesa.2017.05.018
- Sek, M.S., Aydin, M., Yurtcu, H.H. and Reddy, J.N. (2015), "Sizedependent vibration of a microplate under the action of a moving load based on the modified couple stress theory", Acta. Mech., 226(11), 3807-3822. https://doi.org/10.1007/s00707-015-1437-9
- Selim, B.A., Yin, B.B. and Liew, K.M. (2108), "Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Part B. Eng., 136, 10-19. https://doi.org/10.1016/j.compositesb.2017.09.074
- Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Math. Model., 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022
- Thai, H.T. and Vo, T.P. (2013), "A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory", Compos. Struct., 96, 376-383. https://doi.org/10.1016/j.compstruct.2012.09.025
- Wang, Y., Feng, C., Santiuste, C., Zhao, Z. and Yang, J. (2019), "Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs)", Aero. Sci. Tech, 91, 208-218. https://doi.org/10.1016/j.ast.2019.05.008
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090
- Zhang, Y.F., Zhang, W. and Yao, Z.G. (2018), "Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate", Eng. Struct., 173, 89-106. https://doi.org/10.1016/j.engstruct.2018.04.100
- Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. Part B. Eng., 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001
피인용 문헌
- Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.115
- Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
- New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2020, https://doi.org/10.12989/amr.2021.10.3.169