DOI QR코드

DOI QR Code

Performance Comparison of VRS and FKP Network RTK User According to Baseline Length

기선 거리에 따른 VRS와 FKP 방식의 Network RTK 사용자 성능 비교

  • 임철순 (세종대학교 항공우주공학과) ;
  • 박병운 (세종대학교 항공우주공학과)
  • Received : 2020.12.04
  • Accepted : 2020.12.24
  • Published : 2020.12.30

Abstract

In this paper, the performances of virtual reference station (VRS) and flächen korrektur parameter (FKP) based Network real time kinematics (RTK) according to baseline length were compared and analyzed. We applied the VRS and FKP corrections for each baseline length obtained from National Geographic Information Institute Network RTK services to an FKP-supported commercial receiver and analyzed the RTK results in the range and position domains. In the case of VRS, RTK performance was degraded due to the spatial error, which increase in proportion of the baseline length. On the other hand, FKP compensates for spatial errors by using the gradients of dispersive and non-dispersive errors, so it showed stable RTK performance compared to VRS even if the baseline length increases up to 130 km. However, in the case of long baseline of 150 km or more, integer ambiguities were incorrectly fixed due to the decrease in the performance of the FKP corrections.

본 논문에서는 기선 거리에 따른 VRS (virtual reference station)와 FKP (flächen korrektur parameter) 방식의 Network RTK (real time kinematics) 사용자 성능을 비교 분석하였다. 이를 위해 현재 국토지리정보원에서 운영 중인 VRS 및 FKP 서비스를 통해 기선 거리 별 보정정보를 취득하여 상용 수신기에 적용한 후, RTK 수행 결과를 측정치 영역과 위치 영역에서 각각 분석하였다. VRS의 경우, 사용자가 기선 거리가 증가함에 따라 발생하는 공간이격 오차를 보상하지 못하므로 전반적인 RTK 성능이 저하되는 것을 확인하였다. 반면, FKP는 VRS와 달리 전리층 및 비전리층 오차의 구배를 이용하여 사용자와 기준국 간 측정치의 공간이격 오차를 보상하므로 기선 거리 약 130 km 수준까지는 기선 거리 증가하더라도 VRS에 비해 안정적인 RTK 성능을 보여주었지만, 150 km이상의 장기저선의 경우에는 FKP 보정정보의 성능 감소로 인해 미지정수 오결정 등의 문제가 발생하였다.

Keywords

References

  1. C. Rizos and S. Han, "Reference station network based RTK systems-concepts and progress," Wuhan University Journal of Natural Sciences, Vol. 8, No. 2, pp. 566-574, June, 2003. https://doi.org/10.1007/BF02899820
  2. J. S. Song, B. W. Park and C. D. Kee, "Study on generating compact Network RTK corrections considering ambiguity level adjustment among reference station networks for constructing infrastructure of land vehicle," Journal of Advanced Navigation Technology, Vol. 17, No. 4, pp. 404-412, Aug. 2013. https://doi.org/10.12673/jkoni.2013.17.4.404
  3. B. Park, A study on reducing temporal and spatial decorrelation effect in GNSS augmentation system: Consideration of the correction message standardization, Ph.D. dissertation, Seoul National University, Seoul, Feb. 2008.
  4. G. R. Hu, H. S. Khoo, P. C. Goh and C. L. Law, "Development and assessment of GPS virtual reference stations for RTK positioning," Journal of Geodesy, Vol. 77, No. 5-6, pp. 292-302, Aug. 2003. https://doi.org/10.1007/s00190-003-0327-4
  5. RTCM Standards 10403.2, Differential GNSS (Global Navigation Satellite Systems) Services - Version 3, Feb. 2013.
  6. B. Eissfeller, D. Dotterbock, D. Junker and C. Stober, Online GNSS data processing - status and future developments [Internet]. Available: https://www.researchgate.net/publication/266874829_Online_GNSS_Data_Processing_-_Status_and_Future_Developments.
  7. O. Gokdas and M. T. Ozludemir (2020, July). A variance model in NRTK-based geodetic positioning as a function of baseline length. Geosciences 2020 [Online]. 10(7), pp. 262-275. Available: https://www.mdpi.com/2076-3263/10/7/262 https://doi.org/10.3390/geosciences10070262
  8. G. Wubbena, A. Bagge, and M. Schmitz, "RTK networks based on Geo++® GNSMART - concepts, implementation, results," in Proceeding of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City: UT, pp. 368-378. 2001.
  9. C. S. Lim, H. J. Yoon, A. Cho, C. S. Yoo and B. W. Park (2019, Dec.). Dynamic performance evaluation of various GNSS receivers and positioning modes with only one flight test. Electronics 2019 [Online]. 8(12), pp. 1518-1538. Available: https://www.mdpi.com/2079-9292/8/12/1518 https://doi.org/10.3390/electronics8121518
  10. RACELOGIC, LabSat 3 Wideband [Internet]. Available: https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband
  11. GNSS Science Support Centre, Networked transport of RTCM via internet protocol (Ntrip) - Version 1.0 [Internet]. Available: https://gssc.esa.int/wp-content/uploads/2018/07/NtripDocumentation.pdf.