DOI QR코드

DOI QR Code

인천국제공항과 김포국제공항의 비행 절차 위험도 분석

Risk Analysis of Flight Procedures at Incheon International Airport and Gimpo International Airport

  • 이현웅 (인하대학교 항공우주공학과) ;
  • 이학태 (인하대학교 항공우주공학과)
  • Lee, Hyeonwoong (Department of Aerospace Engineering, Inha University) ;
  • Lee, Hak-Tae (Department of Aerospace Engineering, Inha University)
  • 투고 : 2020.12.04
  • 심사 : 2020.12.21
  • 발행 : 2020.12.30

초록

본 논문은 기록된 항적 데이터를 이용하여 혼잡한 공항의 비행 절차별 위험도를 분석하는 방법론을 제시하고, ADS-B (automatic dependent surveillance-broadcast) 데이터를 기반으로 재생성된 100일 치의 항적 데이터를 사용하여 인천국제공항과 김포국제공항의 비행 절차별 위험도를 분석한 결과를 보여준다. 위험도 분석은 DWC (detect and void well clear) 를 이용하였으며, 이를 통해 비행 절차별로 가장 높은 위험도가 나타나는 구간과 위험 발생이 잦은 구간을 평가하였다. 그 결과, 인천국제공항의 표준계기출발절차 중 RNAV BOPTA 1L의 SI712 - RANOS Fix 구간에서 가장 높은 위험도가 나타났으며, 표준계기도착절차 중에서는 RNAV GUKDO 1N에서는 SI947-DANAN Fix 구간에서 가장 높은 위험도가 나타났다. 또한 김포국제공항의 표준계기출발절차 중에서는 RNAV BULTI 1X의 SS726 - SS727 Fix, 표준계기도착절차 중에서는 RNAV OLMEN 1D의 KAKSO - KALMA Fix 구간에서 가장 높은 위험도가 나타났다.

This paper presents a risk assessment methodology for standard flight procedures using recorded automatic dependent surveillance-broadcast (ADS-B) data. Utilizing the proposed methodology, the results of risk analyses in RKSI (incheon international airport) and RKSS (gimpo international airport) using trajectories that are regenerated based on 100 days of ADS-B data are presented. For the risk metric, detect and avoid well clear (DWC) is used. With this index, each procedure was evaluated for the sections with highest level of risk. Among the standard instrument departure (SID) of RKSI, the section between SI712 and RANOS of RNAV BOPTA 1L showed the highest level of risk. For the standard terminal arrival route (STAR) of RKSI, section between SI947 and DANAN of RNAV GUKDO 1N wasthe one with the highest level of risk. For RKSS, the segment between SS726 and SS727 of RNAV BULTI 1X and the segment between KAKSO and KALMA of RNAV OLMEN 1D showed the highest level of risk among the SIDs and STARs, respectivly.

키워드

참고문헌

  1. Airportal. Aviation Statistics [Internet]. Available: https://www.airportal.go.kr/knowledge/statsnew/main.jsp.
  2. J. H. Kim, T. U. Kim, and D. H. Yoon, "Analysis of the factors and patterns associated with death in aircraft accidents and incidents using data mining techniques," Journal of Digital Convergence, Vol. 17, No. 9, pp. 79-88, 2019.
  3. The 1090MHz Riddle. ADS-B Basics [Internet]. Available: https://mode-s.org/decode/adsb.html.
  4. H. W. Lee, B. S. Park, H. K. Lyu, and H. T. Lee, "Analysis of conflict risk in terminal maneuvering Area using recorded ads-b trajectories," in Proceeding of 2017 Asia-Pacific International Symposium on Aerospace Technology (APISAT), Seoul: Korea, Unpublished, 2017
  5. H. W. Lee, B. S. Park, and H. T. Lee, "Analysis of alerting criteria and daa sensor requirements in terminal area," in Proceeding of the 38th IEEE/AIAA Digital Avionics System Conference, San Diego: CA, pp. 1-9, Sep. 2019.
  6. B. S. Park, and H. T. Lee, "Simple model for aircraft trajectory generation using bada," in Proceeding of 2016 The Korean Navigation Institute Conference, Seoul: Korea, Vol. 20, pp. 190-193, 2016.
  7. Aeronautical Information Services, Aeronautical Information Publication [Internet]. Available: http://ais.casa.go.kr.
  8. DO-365: Minimum operational performance standards (mops) for detect and avoid (daa) systems, RTCA Special Committee 228, 2017.
  9. DO-365A: Minimum operational performance standards (mops) for detect and Avoid (daa) systems, RTCA Special Committee 228, 2020.
  10. ICAO, Air Traffic Services: ANNEX 11 to the Convention of International Civil Aviation, July 2001.