DOI QR코드

DOI QR Code

Applicability of Optical Flow Information for UAV Navigation under GNSS-denied Environment

위성항법 불용 환경에서의 무인비행체 항법을 위한 광류 정보 활용

  • Kim, Dongmin (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Taegyun (Department of Aerospace Engineering, Chungnam National University) ;
  • Jeaong, Hoijo (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Younsil (Unmanned Aircraft System Research Division, Korea Aerospace Research Institute) ;
  • Han, Sanghyuck (Artificial Intelligence Research Section, Korea Aerospace Research Institute)
  • 김동민 (충남대학교 항공우주공학과) ;
  • 김태균 (충남대학교 항공우주공학과) ;
  • 정회조 (충남대학교 항공우주공학과) ;
  • 석진영 (충남대학교 항공우주공학과) ;
  • 김승균 (충남대학교 항공우주공학과) ;
  • 김연실 (한국항공우주연구원 무인기연구부) ;
  • 한상혁 (한국항공우주연구원 인공지능연구실)
  • Received : 2019.12.17
  • Accepted : 2020.02.27
  • Published : 2020.02.28

Abstract

This paper investigates the applicability of optical flow information for unmanned aerial vehicle (UAV) navigation under environments where global navigation satellite system (GNSS) is unavailable. Since the optical flow information is one of important measurements to estimate horizontal velocity and position, accuracy of the optical flow information must be guaranteed. So a navigation algorithm, which can estimate and cancel biases that the optical flow information may have, is suggested to improve the estimation performance. In order to apply and verify the proposed algorithm, an integrated simulation environment is built by designing a guidance, navigation, and control (GNC) system. Numerical simulations are implemented to analyze the navigation performance using this environment.

본 논문에서는 위성항법 불용 환경에서의 무인비행체 항법을 위한 광류 정보 활용에 관한 연구 내용을 기술한다. 광류 정보는 위성항법 불용 환경에서 수평 위치 및 속도 추정을 위해 중요한 측정값이므로 정확한 광류 정보의 획득은 필수적이다. 이에 광류 정보에 포함될 수 있는 바이어스를 추정하여 상쇄함으로써 추정 성능을 향상시킬 수 있는 항법 알고리즘을 제안한다. 제안된 알고리즘을 적용하여 검증하기 위해 유도, 항법, 제어 시스템을 설계하여 통합 시뮬레이션 환경을 구축한다. 이를 기반으로 수치 시뮬레이션을 수행하여 제안된 알고리즘을 분석한다.

Keywords

References

  1. A. Koch, H. Wittig, and F. Thielecke, "A vision-based navigation algorithm for a VTOL-UAV," in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone: CO, pp. 6546, Aug. 2006.
  2. C. Shen, Z. Bai, H. Cao, K. Xu, C. Wang, H. Zhang, and J. Liu, "Optical flow sensor/INS/magnetometer integrated navigation system for MAV in GPS-denied environment," Journal of Sensors, Vol. 2016, Article ID 6105803, 10 pages, https://doi.org/10.1155/2016/6105803, Jan. 2016.
  3. J. Goppert, S. Yantek, and I. Hwang, "Invariant Kalman filter application to optical flow based visual odometry for UAVs," in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, Milan: Italy, pp. 99-104, Jul. 2017.
  4. S. Omari, and G. Ducard, "Metric visual-inertial navigation system using single optical flow feature," in 2013 European Control Conference (ECC). IEEE, Zurich: Switzerland, pp. 1310-1316, Jul. 2013.
  5. A. Mathis, W. Nothwang, D. Donavanik, J. Conroy, J. Shamwell, and R. Robinson: Making optic flow robust to dynamic lighting conditions for real-time operation, US Army Research Laboratory, Adelphi, MD, USA, ARL-TR-7629, Mar. 2016.
  6. Using the ECL EKF. Available: https://docs.px4.io/master/en/advanced_config/tuning_the_ecl_ekf.html.
  7. M. Bayat, V. Hassani, and A. P. Aguiar, "Nonlinear Kalman based filtering for pose estimation of a robotic vehicle from discrete asynchronous range measurements," in Proceedings of the 8th Portuguese Conference on Automatic Control (CONTROLO), Vila Real: Portugal, pp. 21-23, Jul. 2008.
  8. V. Fathabadi, M. Shahbazian, K. Salahshour, and L. Jargani, "Comparison of adaptive Kalman filter methods in state estimation of a nonlinear system using asynchronous measurements," in Proceedings of the World Congress on Engineering and Computer Science, San Francisco: CA, USA, vol. 2, pp. 20-22, Oct. 2009.
  9. D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, "An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications," in 2013 IEEE International Conference on Robotics and Automation. IEEE, Karlsruhe: Germany, pp. 1736-1741, May. 2013.
  10. T. Magnusson, Attitude control of a hexarotor, Master's thesis, Linkoping University, Linkoping, Sweden, Jun. 2014.
  11. M. Herrera, W. Chamorro, A. P. Gomez, and O. Camacho, "Sliding mode control: An approach to control a quadrotor," in 2015 Asia-Pacific Conference on Computer Aided System Engineering. IEEE, Quito: Ecuador, pp. 314-319, Jul. 2015.
  12. S. Bouabdallah, and R. Siegwart, "Backstepping and sliding-mode techniques applied to an indoor micro quadrotor," in Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, Barcelona: Spain, pp. 2247-2252, Apr. 2005.