DOI QR코드

DOI QR Code

A Level-set Parameterization for Any 3D Complex Interface Related to a Fire Spread in Building Structures

복잡한 CAD 형상의 매개변수화를 통한 3차원 경계면 레벨-셋 알고리즘 개발 및 적용

  • Kim, Hyun-Jun (Korea Aerospace Research Institute) ;
  • Cho, Soo-Yeong (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Young-hun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2019.07.25
  • Accepted : 2020.01.15
  • Published : 2020.02.01

Abstract

To define an interface in a conventional level-set method, an analytical function must be revealed for an interfacial geometry. However, it is not always possible to define a functional form of level sets when interfaces become complex in a Cartesian coordinate system. To overcome this difficulty, we have developed a new level-set formalism that discriminates the interior from the exterior of a CAD modeled interface by parameterizing the stereolithography (STL) file format. The work outlined here confirms the accuracy and scalability of the hydrodynamic reactive solver that utilizes the new level set concept through a series of tests. In particular, the complex interaction between shock and geometrical confinements towards deflagration-to-detonation transition is numerically investigated. Also, a process of flame spreading and damages caused by point source detonation in a real-sized plant facility have been simulated to confirm the validity of the new method built for reactive hydrodynamic simulation in any complex three-dimensional geometries.

경계면을 정의하는 기존의 레벨-셋 기법은 대개 수학적인 수식을 이용한다. 그러나 3차원 데카르트 좌표계에서 복잡한 경계면을 수식으로 설정하는 방식은 거의 불가능하다. 이러한 이유로 우리는 보편적으로 사용되는 스테레오리쏘그래피(STL) 형식을 매개 변수화하여 3D 캐드 형상의 내부와 외부를 구분하는 레벨-셋 경계면 설정 알고리즘을 개발하였다. 본 논문은 반응막대 실험 모사를 통해 기존의 경계면 설정 방식과 새로운 경계면 설정 방식 결과와 비교하여 이 알고리즘이 적용된 하이드로 다이내믹 솔버의 타당성을 확보하였다. 이를 통해 가연성 기체로 채워진 다양한 형상 안에서 충격파와 상호작용이 연소 폭발 천이 현상에 미치는 영향을 수치적으로 해석하였다. 또한, 실제 크기의 공장 설비에서 화염이 퍼져나가는 과정과 데토네이션 발생이 설비에 미치는 피해를 수치적으로 예측하는 시뮬레이션을 진행하였다.

Keywords

References

  1. Mavriplis, D. J., "Unstructured grid techniques," Annual Review of Fluid Mechanics, Vol. 29, No. 1, 1997, pp. 473-514. https://doi.org/10.1146/annurev.fluid.29.1.473
  2. Stanley, D., and Fedkiw, R., Level set methods and dynamic implicit surfaces, Vol. 153, Springer Science & Business Media, 2006.
  3. Gwak, M. C., Lee, Y. H., and Yoh, J. J., "Numerical Investigation of Kerosene-Based Pulse-Detonation Loading on the Metal Tubes," Journal of Propulsion and Power, 2016, pp. 1146-1152.
  4. Choi, J. I., Oberoi, R. C., Edwards, J. R., and Rosati, J. A., "An immersed boundary method for complex incompressible flows," Journal of Computational Physics, Vol. 224, No. 2, 2007, pp. 757-784. https://doi.org/10.1016/j.jcp.2006.10.032
  5. Mauch, S., "A fast algorithm for computing the closest point and distance transform," Go online to http://www.acm.caltech.edu/seanm/software/cpt/cpt.pdf, 2000.
  6. Szilvsi-Nagy, M., and Matyasi, G. Y., "Analysis of STL files," Mathematical and Computer Modelling, Vol. 38, No. 7-9, 2003, pp. 945-960. https://doi.org/10.1016/S0895-7177(03)90079-3
  7. Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y., "An optimal algorithm for approximate nearest neighbor searching fixed dimensions," Journal of the ACM (JACM), Vol. 45, No. 6, 1998, pp. 891-923. https://doi.org/10.1145/293347.293348
  8. Baerentzen, J. A., and Aanaes, H., "Signed distance computation using the angle weighted pseudonormal," IEEE Transactions on Visualization and Computer Graphics, Vol. 11, No. 3, 2005, pp. 243-253. https://doi.org/10.1109/TVCG.2005.49
  9. Sagawa, R., and Ikeuchi, K., "Taking consensus of signed distance field for complementing unobservable surface," In Fourth International Conference on 3-D Digital Imaging and Modeling IEEE Proceedings, October 2003, pp. 410-417.
  10. Baek, D. H., Kim, B. H., and Yoh, J. J., "Modeling the effects of aluminum and ammonium perchlorate addition on the detonation of the high explosives C4H8O8N8 (HMX) and C3H6O6N6 (RDX)," Journal of Applied Physics, Vol. 124, No. 21, 2018.
  11. Oran, E. S., and Gamezo, V. N., "Origins of the deflagration-to-detonation transition in gas-phase combustion," Combustion and Flame, Vol. 148, No. 1-2, 2007, pp. 4-47. https://doi.org/10.1016/j.combustflame.2006.07.010
  12. Gamezo, V. N., Khokhlov, A. M., and Oran, E. S., "Effects of wakes on shock-flame interactions and deflagration-to-detonation transition," Proceedings of the Combustion Institute, Vol. 29, No. 2, 2002, pp. 2803-2808. https://doi.org/10.1016/S1540-7489(02)80342-X
  13. Gwak, M. C., and Yoh, J. J., "Effect of multi-bend geometry on deflagration to detonation transition of a hydrocarbon-air mixture in tubes," International Journal of Hydrogen Energy, Vol. 38, No. 26, 2013, pp. 11446-11457. https://doi.org/10.1016/j.ijhydene.2013.06.108
  14. Yoh, J. J., and Kim, K. H., "Shock compression of condensed matter using Eulerian multimaterial method: Applications to multidimensional shocks, deflagration, detonation, and laser ablation," Journal of Applied Physics, Vol. 103, No. 11, 2008.
  15. Thomas, G., Bambrey, R., and Brown, C., "Experimental observations of flame acceleration and transition to detonation following shock-flame interaction," Combustion Theory and Modelling, Vol. 5, No. 4, 2001, pp. 573-594. https://doi.org/10.1088/1364-7830/5/4/304
  16. John, J. E., Gas dynamics, 1984.
  17. Kapahi, A., Sambasivan, S., and Udaykumar, H. S., "A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems," Journal of Computational Physics, Vol. 241, 2013, pp. 308-332. https://doi.org/10.1016/j.jcp.2013.01.007
  18. Hjertager, B. H., Fuhre, K., and Bjorkhaug, M., "Gas explosion experiments in 1: 33 and 1: 5 scale offshore separator and compressor modules using stoichiometric homogeneous fuel/air clouds," Journal of Loss Prevention in the Process Industries, Vol. 1, No. 4, 1988, pp. 197-205. https://doi.org/10.1016/0950-4230(88)85004-6
  19. Kim, B. H., Park, J. S., Lee, K. C., and Yoh, J. J., "A Reactive flow model for heavily aluminized cyclotrimethylene-trinitramine," Journal of Applied Physics, Vol. 116, No. 2, 2014.
  20. Steinberg, D. J., Equation of state and strength properties of selected materials, UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, CA, USA, 1996.
  21. Souers., P. C., Anderson, S., Mercer, J., McGuire, E., and Vitello, P., "JWL++: A simple reactive flow code package for detonation," Propellants, Explosives, Pyrotechnics, Vol. 25, No. 2, 2000, pp. 54-58. https://doi.org/10.1002/(SICI)1521-4087(200004)25:2<54::AID-PREP54>3.0.CO;2-3